The Weekly Rigor

No. 2

"A mathematician is a machine for turning coffee into theorems."

July 5, 2014

Basic Logarithmic Properties

(Part 2)

Theorem 5 (Product Rule):

$$\log_a(x \bullet y) = \log_a(x) + \log_a(y)$$

Preliminary Remark: In words: The log of a product equals the sum of the logs of the two factors.

Proof: by Theorem 4. Therefore,

 $a^{\log_a(x) + \log_a(y)} = a^{\log_a(x)} \bullet a^{\log_a(y)} = x \bullet y,$ $\log_a(x \bullet y) = \log_a(x) + \log_a(y),$

by Definition 1.

Example: $\log_2(32) = \log_2(8 \cdot 4) = \log_2(8) + \log_2(4) = \log_2(2^3) + \log_2(2^2) = 3 + 2 = 5.$

Theorem 6 (Quotient Rule):

 $\log_a(x/y) = \log_a(x) - \log_a(y).$

Preliminary Remark: In words: The log of a quotient equals the log of the numerator minus the log of the denominator.

Proof: by Theorem 4. Therefore,

 $a^{\log_{a}(x) - \log_{a}(y)} = a^{\log_{a}(x)} / a^{\log_{a}(y)} = x/y,$ $\log_{a}(x/y) = \log_{a}(x) - \log_{a}(y),$

by Definition 1.

Theorem 7 (Power Rule):

 $\log_a(x^m) = m \cdot \log_a(x).$

Preliminary Remark: In words: The log of a power equals the exponent times the log of the power's base.

Proof: by Theorem 4. Hence,	$x^{m} = [a^{\log_{a}(x)}]^{m},$ $[a^{\log_{a}(x)}]^{m} = a^{\log_{a}(x) \cdot m} = a^{m \cdot \log_{a}(x)}.$ $a^{m \cdot \log_{a}(x)} = x^{m}$
Therefore, by Definition 1.	$\log_a(x^m) = m \cdot \log_a(x),$
Theorem 8 (Change of Base Formula):	$\log_a(x) = \frac{\log_b(x)}{\log_b(a)}.$
Proof: by Theorem 4.	$\log_b(x) = \log_b(a^{\log_a(x)}),$ $\log_b(a^{\log_a(x)}) = \log_b(x) \cdot \log_b(a)$

by Theorem 7. Hence,

Therefore,

Example:

$$\overline{\log_b(a)}^{-}.$$

$$\log_b(x) = \log_b(a^{\log_a(x)}),$$

$$\log_b(a^{\log_a(x)}) = \log_a(x) \cdot \log_b(a),$$

$$\log_a(x) \cdot \log_b(a) = \log_b(x).$$

$$\log_a(x) = \frac{\log_b(x)}{\log_b(a)}.$$

$$\log_2(x) = \log_e(x) / \log_e(2) = \log_{10}(x) / \log_{10}(2).$$

"Only he who never plays, never loses."

Only ne who never plays, never loses.	
Written and published every Saturday by Richard Shedenhelm	WeeklyRigor@gmail.com