©he

No. 2
"A mathematician is a machine for turning coffee into theorems."
July 5, 2014

Basic Logarithmic Properties

(Part 2)

Theorem 5 (Product Rule):

$$
\log _{a}(x \cdot y)=\log _{a}(x)+\log _{a}(y) .
$$

Preliminary Remark: In words: The log of a product equals the sum of the logs of the two factors.

Proof:

$$
a^{\log _{a}(x)+\log _{a}(y)}=a^{\log _{a}(x)} \cdot a^{\log _{a}(y)}=x \cdot y,
$$

by Theorem 4. Therefore,

$$
\log _{a}(x \cdot y)=\log _{a}(x)+\log _{a}(y),
$$

by Definition 1.

Example: $\quad \log _{2}(32)=\log _{2}(8 \cdot 4)=\log _{2}(8)+\log _{2}(4)=\log _{2}\left(2^{3}\right)+\log _{2}\left(2^{2}\right)=3+2=5$.

Theorem 6 (Quotient Rule):

$$
\log _{a}(x / y)=\log _{a}(x)-\log _{a}(y) .
$$

Preliminary Remark: In words: The \log of a quotient equals the \log of the numerator minus the log of the denominator.

Proof:

$$
a^{\log _{a}(x)-\log _{a}(y)}=a^{\log _{a}(x)} / a^{\log _{a}(y)}=x / y,
$$

by Theorem 4. Therefore,

$$
\log _{a}(x / y)=\log _{a}(x)-\log _{a}(y),
$$

by Definition 1.

Theorem 7 (Power Rule): $\quad \log _{a}\left(x^{m}\right)=m \bullet \log _{a}(x)$.
Preliminary Remark: In words: The log of a power equals the exponent times the log of the power's base.

Proof:
by Theorem 4.

Hence,

Therefore,

$$
\log _{a}\left(x^{m}\right)=m \bullet \log _{a}(x)
$$

by Definition 1.

Theorem 8 (Change of Base Formula):

$$
\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)} .
$$

Proof:

$\log _{b}(x)=\log _{b}\left(a^{\log _{a}(x)}\right)$,
by Theorem 4.

$$
\log _{b}\left(a^{\log _{a}(x)}\right)=\log _{a}(x) \cdot \log _{b}(a),
$$

by Theorem 7. Hence,

$$
\log _{a}(x) \cdot \log _{b}(a)=\log _{b}(x) .
$$

Therefore,

$$
\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)} .
$$

Example:

$$
\log _{2}(x)=\log _{e}(x) / \log _{e}(2)=\log _{10}(x) / \log _{10}(2)
$$

"Only he who never plays, never loses."

