The Weekly Rigor

No. 4

"A mathematician is a machine for turning coffee into theorems."

July 19, 2014

Some Consequences of the Basic Logarithmic Properties (Part 2)

Theorem 4: $\log_{a}(x/y) + \log_{a}(y/x) = 0.$ Proof: and $\log_{a}(x/y) = \log_{a}(x) - \log_{a}(y)$ $\log_{a}(y/x) = \log_{a}(y) - \log_{a}(x),$ by Theorem 6 of WR no. 2. Therefore, $\log_{a}(x/y) + \log_{a}(y/x) = [\log_{a}(x) - \log_{a}(y)] + [\log_{a}(y) - \log_{a}(x)]$ $= \log_{a}(x) - \log_{a}(y) + \log_{a}(y) - \log_{a}(x) = 0.$

Theorem 5:	$\log_a(x^{\log_a(x)}) = \left[\log_a(x)\right]^2.$
Proof: by Theorem 7 of <i>WR</i> no. 1.	$\log_a(x^{\log_a(x)}) = \log_a(x) \cdot \log_a(x),$
	$\log_a(x) \cdot \log_a(x) = \left[\log_a(x)\right]^2.$
Therefore,	$\log_a(x^{\log_a(x)}) = [\log_a(x)]^2.$

Theorem 6:	$\log_a(x^{\log_a(x^{\log_a(x)})}) = [\log_a(x)]^3.$
Proof:	$\log_{a}(x^{\log_{a}(x^{\log_{a}(x)})}) = \log_{a}(x^{[\log_{a}(x)]^{2}}),$
by Theorem 5.	$\log_a(x^{[\log_a(x)]^2}) = [\log_a(x)]^2 \cdot \log_a(x),$
by Theorem 7 of WR no. 1.	$\left[\log_{a}(x)\right]^{2} \cdot \log_{a}(x) = \left[\log_{a}(x)\right]^{3}.$
Therefore,	$\log_{a}(x^{\log_{a}(x^{\log_{a}(x)})}) = [\log_{a}(x)]^{3}.$
	$\log_a(x)$, $\log_a(x)$].

Theorem 7:
$$\log_a(x + y) = \log_a(x) + \log_a(1 + y/x).$$

Proof: $\log_a(x + y) = \log_a(x + x \cdot [y/x]) = \log_a(x \cdot [1 + y/x]).$

But,

by Theorem 5 of WR no. 2. Therefore,

$$\log_a(x + x \bullet \lfloor y/x \rfloor) - \log_a(x \bullet \lfloor 1 + y/x \rfloor).$$

$$\log_{a}(x \cdot [1 + y/x]) = \log_{a}(x) + \log_{a}(1 + y/x),$$

$$\log_a(x+y) = \log_a(x) + \log_a(1+y/x).$$

Theorem 8:

$$\log_{a}(x + y) = \log_{a}(x) + \log_{a}(1 + a^{\log_{a}(y) - \log_{a}(x)}).$$
Proof:
by Theorem 7.
and

$$a^{\log_{a}(y)} = y$$
and

$$a^{\log_{a}(x)} = x,$$

by Theorem 4 of *WR* no. 1. Hence,

 $\log_{a}(x) + \log_{a}(1 + y/x) = \log_{a}(x) + \log_{a}(1 + a^{\log_{a}(y)}/a^{\log_{a}(x)})$ $= \log_{a}(x) + \log_{a}(1 + a^{\log_{a}(y) - \log_{a}(x)}).$

Therefore,

$$\log_{a}(x+y) = \log_{a}(x) + \log_{a}(1+a^{\log_{a}(y) - \log_{a}(x)}).$$

Theorem 9: For x > y,

$$\log_a(x - y) = \log_a(x) + \log_a(1 - y/x).$$

Preliminary Remark: The purpose of the constraint x > y is to prevent $x - y \le 0$ and $1 - y/x \le 0$ in the arguments of the logarithmic functions, which, per Definition 1 of WR no. 1, are forbidden.

Proof: For x > y, $\log_a(x - y) = \log_a(x + [-y]).$ But, $\log_a(x + [-y]) = \log_a(x) + \log_a(1 + [-y]/x),$ by Theorem 7. $\log_{a}(x) + \log_{a}(1 + [-y]/x) = \log_{a}(x) + \log_{a}(1 - y/x).$ Therefore, $\log_{a}(x - y) = \log_{a}(x) + \log_{a}(1 - y/x).$

"Only he	who nev	er plays	never	loses "
Only ne	who he	or plays,	never	10505.

Written and published every Saturday by Richard Shedenhelm	WeeklyRigor@gmail.com
	Weeki jiugor e ginameoin