Uht

Some Consequences of the Basic Logarithmic Properties

(Part 3)

Theorem 10: For $x>y$,

$$
\log _{a}(x-y)=\log _{a}(x)+\log _{a}\left(1-a^{\log _{a}(y)-\log _{a}(x)}\right) .
$$

Proof: For $x>y$,

$$
\log _{a}(x-y)=\log _{a}(x)+\log _{a}(1-y / x),
$$

by Theorem 9 .

$$
a^{\log _{a}(y)}=y
$$

and

$$
a^{\log _{a}(x)}=x,
$$

by Theorem 4 of $W R$ no. 1. Hence,

$$
\begin{aligned}
& \log _{a}(x)+\log _{a}(1-y / x)=\log _{a}(x)+\log _{a}\left(1-a^{\log _{a}(y)} / a^{\log _{a}(x)}\right) \\
& =\log _{a}(x)+\log _{a}\left(1-a^{\log _{a}(y)-\log _{a}(x)}\right) .
\end{aligned}
$$

Therefore,

$$
\log _{a}(x-y)=\log _{a}(x)+\log _{a}\left(1-a^{\log _{a}(y)-\log _{a}(x)}\right)
$$

Theorem 11:

$$
\log _{a}(x) \cdot \log _{b}(a)=\log _{b}(x)
$$

Proof: By Theorem 8 of $W R$ no. 2.

Theorem 12:

Proof:

by Theorem 3.

But,

$$
c^{\log _{c}(a) \cdot \log _{b}(c)}=c^{\log _{b}(a)}
$$

by Theorem 11. Therefore,
$a^{\log _{b}(c)}=c^{\log _{b}(a)}$.

Problem: Evaluate $10^{\log _{100}(9)}$.

Solution:

by Theorem 12.
by Theorem 3 of $W R$ no. 1.

$$
10^{\log _{100}(9)}=9^{\log _{100}(10)}
$$

$$
9^{\log _{100}(10)}=9^{\log _{100}\left(100^{1 / 2}\right)}=9^{1 / 2}
$$

Ther

$$
9^{1 / 2}=3 .
$$

Therefore,

$$
10^{\log _{100^{(9)}}}=3 .
$$

Theorem 13:

$$
\log _{a}(b)=1 / \log _{b}(a) .
$$

Proof:

$$
\log _{a}(b)=\log _{b}(b) / \log _{b}(a),
$$

by Theorem 8 of $W R$ no. 2.

$$
\log _{b}(b)=1,
$$

by Theorem 1 of $W R$ no. 1. Therefore,

$$
\log _{a}(b)=1 / \log _{b}(a) .
$$

Theorem 14:

$$
\log _{a}(b) \cdot \log _{b}(a)=1
$$

Proof: By Theorem 13.

Theorem 15:

$$
\log _{a}(x) \cdot \log _{b}(a) \cdot \log _{c}(b)=\log _{c}(x)
$$

Proof: $\quad \log _{a}(x) \cdot \log _{b}(a) \cdot \log _{c}(b)=\left[\log _{a}(x) \cdot \log _{b}(a)\right] \cdot \log _{c}(b)=\log _{b}(x) \cdot \log _{c}(b)=\log _{c}(x)$, by Theorem 11.
"Only he who never plays, never loses."

