The Weekly Rigor

No. 6

"A mathematician is a machine for turning coffee into theorems."

August 2, 2014

Some Consequences of the Basic Logarithmic Properties (Part 4)

Theorem 16:
$$\log_a(x) \cdot \log_b(y) \cdot \log_c(z) = \log_b(x) \cdot \log_c(y) \cdot \log_a(z).$$

Proof: $\log_a(x) \cdot \log_b(y) \cdot \log_c(z) = [\log_b(x)/\log_b(a)] \cdot [\log_c(y)/\log_c(b)] \cdot [\log_a(z)/\log_a(c)],$ by Theorem 8 of *WR* no. 2. $[\log_b(x)/\log_b(a)] \cdot [\log_c(y)/\log_c(b)] \cdot [\log_a(z)/\log_a(c)]$

$$= [\log_b(x) \cdot \log_c(y) \cdot \log_a(z)] / [\log_b(a) \cdot \log_c(b) \cdot \log_a(c)]$$

= $[\log_b(x) \cdot \log_c(y) \cdot \log_a(z)] / \log_a(a),$

by Theorem 15.

$$[\log_b(x) \cdot \log_c(y) \cdot \log_a(z)]/\log_a(a) = [\log_b(x) \cdot \log_c(y) \cdot \log_a(z)]/1$$

=
$$\log_b(x) \cdot \log_c(y) \cdot \log_a(z),$$

by Theorem 1 of WR no. 1. Therefore,

$$\log_a(x) \bullet \log_b(y) \bullet \log_c(z) = \log_b(x) \bullet \log_c(y) \bullet \log_a(z).$$

Theorem 17: For $x \neq 1$,

$$\log_a(x)/\log_{a \cdot b}(x) = 1 + \log_a(b).$$

Preliminary Remark: The purpose of the extra constraint $x \neq 1$ is to prevent $\log_{a \cdot b}(x) = 0$, which would render " $\log_a(x)/\log_{a \cdot b}(x)$ " undefined.

Proof: For $x \neq 1$, by Theorem 13. by Theorem 5 of *WR* no. 2. $\log_a(x) \cdot \log_x(a \cdot b) = \log_a(x) \cdot [\log_x(a) + \log_x(b)],$ by Theorem 14. $1 + \log_a(x) \cdot \log_x(b) = 1 + \log_a(x) \cdot \log_x(b) = 1 + \log_a(x) \cdot \log_x(b),$ by Theorem 11. Therefore, $\log_a(x)/\log_{a \cdot b}(x) = 1 + \log_a(b).$ **Theorem 18:** For $m \neq 0$,

$$\log_{a^m}(x) = \log_a(x)/m$$

Proof: For $m \neq 0$,

$1001.101m \neq 0,$	$\log_{a^m}(x) = \log_a(x) / \log_a(a^m),$
by Theorem 8 of WR no. 2.	u u u
	$\log_a(x)/\log_a(a^m) = \log_a(x)/m,$
by Theorem 3 of WR no. 1. Therefore,	
	$\log_{a^m}(x) = \log_a(x)/m.$

Theorem 19: For $m \neq 0$,

$$\log_{a^m}(x^m) = \log_a(x).$$

Preliminary Remark: "Base and argument are like powers."

Proof: For $m \neq 0$,	
	$\log_{a^m}(x^m) = m \cdot \log_{a^m}(x),$
by Theorem 7 of WR no. 2.	
	$m \cdot \log_{a^m}(x) = m \cdot [\log_a(x)/m],$
by Theorem 18.	
	$m \cdot [\log_a(x)/m] = \log_a(x).$
Therefore,	
	$\log_{a^m}(x^m) = \log_a(x).$

$\log_{10}(729) = \log_{10^3}(9^3) = \log_{10}(9)$

"Only he who never plays, never loses."