Some Consequences of the Basic Logarithmic Properties

(Part 4)

Theorem 16:

$$
\log _{a}(x) \cdot \log _{b}(y) \cdot \log _{c}(z)=\log _{b}(x) \cdot \log _{c}(y) \cdot \log _{a}(z)
$$

Proof: $\quad \log _{a}(x) \cdot \log _{b}(y) \cdot \log _{c}(z)=\left[\log _{b}(x) / \log _{b}(a)\right] \cdot\left[\log _{c}(y) / \log _{c}(b)\right] \cdot\left[\log _{a}(z) / \log _{a}(c)\right]$, by Theorem 8 of $W R$ no. 2 .

$$
\begin{aligned}
& {\left[\log _{b}(x) / \log _{b}(a)\right] \cdot\left[\log _{c}(y) / \log _{c}(b)\right] \cdot\left[\log _{a}(z) / \log _{a}(c)\right]} \\
& =\left[\log _{b}(x) \cdot \log _{c}(y) \cdot \log _{a}(z)\right] /\left[\log _{b}(a) \cdot \log _{c}(b) \cdot \log _{a}(c)\right] \\
& =\left[\log _{b}(x) \cdot \log _{c}(y) \cdot \log _{a}(z)\right] / \log _{a}(a),
\end{aligned}
$$

by Theorem 15.

$$
\begin{aligned}
& {\left[\log _{b}(x) \cdot \log _{c}(y) \cdot \log _{a}(z)\right] / \log _{a}(a)=\left[\log _{b}(x) \cdot \log _{c}(y) \cdot \log _{a}(z)\right] / 1} \\
& =\log _{b}(x) \cdot \log _{c}(y) \cdot \log _{a}(z),
\end{aligned}
$$

by Theorem 1 of $W R$ no. 1. Therefore,

$$
\log _{a}(x) \cdot \log _{b}(y) \cdot \log _{c}(z)=\log _{b}(x) \cdot \log _{c}(y) \cdot \log _{a}(z)
$$

Theorem 17: For $x \neq 1$,

$$
\log _{a}(x) / \log _{a \cdot b}(x)=1+\log _{a}(b) .
$$

Preliminary Remark: The purpose of the extra constraint $x \neq 1$ is to prevent $\log _{a \cdot b}(x)=0$, which would render " $\log _{a}(x) / \log _{a \cdot b}(x)$ " undefined.

Proof: For $x \neq 1$,

$$
\log _{a}(x) / \log _{a \cdot b}(x)=\log _{a}(x) \cdot \log _{x}(a \cdot b)
$$

by Theorem 13.

$$
\log _{a}(x) \cdot \log _{x}(a \cdot b)=\log _{a}(x) \cdot\left[\log _{x}(a)+\log _{x}(b)\right]
$$

by Theorem 5 of $W R$ no. 2 .

$$
\log _{a}(x) \cdot\left[\log _{x}(a)+\log _{x}(b)\right]=\log _{a}(x) \cdot \log _{x}(a)+\log _{a}(x) \cdot \log _{x}(b)=1+\log _{a}(x) \cdot \log _{x}(b),
$$

by Theorem 14.

$$
1+\log _{a}(x) \cdot \log _{x}(b)=1+\log _{x}(b) \cdot \log _{a}(x)=1+\log _{a}(b)
$$

by Theorem 11. Therefore,

$$
\log _{a}(x) / \log _{a \cdot b}(x)=1+\log _{a}(b) .
$$

Theorem 18: For $m \neq 0$,

$$
\log _{a^{m}}(x)=\log _{a}(x) / m
$$

Proof: For $m \neq 0$,

$$
\log _{a^{m}}(x)=\log _{a}(x) / \log _{a}\left(a^{m}\right)
$$

by Theorem 8 of $W R$ no. 2.

$$
\log _{a}(x) / \log _{a}\left(a^{m}\right)=\log _{a}(x) / m,
$$

by Theorem 3 of $W R$ no. 1. Therefore,

$$
\log _{a^{m}}(x)=\log _{a}(x) / m
$$

Theorem 19: For $m \neq 0$,

$$
\log _{a^{m}}\left(x^{m}\right)=\log _{a}(x)
$$

Preliminary Remark: "Base and argument are like powers."
Proof: For $m \neq 0$,

$$
\log _{a^{m}}\left(x^{m}\right)=m \bullet \log _{a^{m}}(x)
$$

by Theorem 7 of $W R$ no. 2.

$$
m \bullet \log _{a^{m}}(x)=m \bullet\left[\log _{a}(x) / m\right],
$$

by Theorem 18.

$$
m \bullet\left[\log _{a}(x) / m\right]=\log _{a}(x)
$$

Therefore,

$$
\log _{a^{m}}\left(x^{m}\right)=\log _{a}(x)
$$

Example:

$$
\log _{1000}(729)=\log _{10^{3}}\left(9^{3}\right)=\log _{10}(9)
$$

