The Weekly Rigor

"A mathematician is a machine for turning coffee into theorems."

No. 7

August 9, 2014

Some Consequences of the Basic Logarithmic Properties (Part 5)

Theorem 20:	$-\log_a(x) = \log_a(1/x) = \log_{1/a}(x).$	
Preliminary Remark: "Base and argument are reciprocals."		
Proof: by Theorem 7 of <i>WR</i> no. 2.	$-\log_a(x) = -1 \cdot \log_a(x) = \log_a(x^{-1}),$	
Hence,	$\log_a(x^{-1}) = \log_a(1/x).$ $-\log_a(x) = \log_a(1/x).$	
Furthermore, by Theorem 18.	$-\log_a(x) = \log_a(x)/-1 = \log_{a^{-1}}(x),$	
	$\log_{a-1}(x) = \log_{1/a}(x).$	
So, Therefore,	$-\log_a(x) = \log_{1/a}(x).$ $-\log_a(x) = \log_a(1/x) = \log_{1/a}(x).$	
Theorem 21:	$\log_a(x) + \log_{1/a}(x) = 0.$	
Proof: by Theorem 20. Furthermore, by Theorem 4. Therefore,	$\log_a(x) + \log_{1/a}(x) = \log_a(x) + \log_a(1/x),$	
	$\log_a(x) + \log_a(1/x) = \log_a(x/1) + \log_a(1/x).$	
	$\log_a(x/1) + \log_a(1/x) = 0,$	
	$\log_a(x) + \log_{1/a}(x) = 0.$	

Theorem 22:	$x^{\log_{a}[\log_{a}(x)] \cdot [\log_{a}(x)]^{-1}} = \log_{a}(x).$
Proof:	$\log_a(x) = \log_a(x).$
Hence,	$\log_a(x) \bullet [\log_a(x)]^{-1} = 1.$
So,	$\{\log_{a}[\log_{a}(x)] \cdot [\log_{a}(x)]^{-1}\} \cdot \log_{a}(x) = \log_{a}[\log_{a}(x)].$
Thus,	$\log_a[x^{\log_a[\log_a(x)] \cdot [\log_a(x)]^{-1}}] = \log_a[\log_a(x)],$
by Theorem 7 of <i>WR</i> no. 2. Therefore	ore, $x^{\log_{a}[\log_{a}(x)] \cdot [\log_{a}(x)]^{-1}} = \log_{a}(x),$
by Theorem 2.	

"Only he who never plays, never loses."