©he

No. 9
"A mathematician is a machine for turning coffee into theorems."
August 23, 2014

Counterexamples to Some Common Logarithmic Errors

(Part 2)

Counterexample 5: For some a, m, and x,

$$
\left[\log _{a}(x)\right]^{m} \neq m \cdot \log _{a}(x)
$$

Proof: Suppose by contradiction that

$$
\left[\log _{a}(x)\right]^{m}=m \cdot \log _{a}(x)
$$

Hence, with $a=m=x=2$,

$$
\left[\log _{2}(2)\right]^{2}=2 \cdot \log _{2}(2)
$$

by substitution. But

$$
\log _{2}(2)=1,
$$

by Theorem 1 of $W R$ no. 1. So,

$$
1^{2}=1=2 \cdot 1=2 .
$$

Contradiction.

Counterexample 6: For some a, m, x, and y,

$$
\log _{a}\left(x^{m}+y\right) \neq m \cdot \log _{a}(x+y) .
$$

Proof: Suppose by contradiction that

$$
\log _{a}\left(x^{m}+y\right)=m \bullet \log _{a}(x+y) .
$$

Hence, with $a=x=2, y=1$, and $m=0$,

$$
\log _{2}\left(2^{0}+1\right)=\log _{2}(2)=0 \cdot \log _{2}(2+1)=0,
$$

by substitution. But

$$
\log _{2}(2)=1,
$$

by Theorem 1 of $W R$ no. 1. So,

$$
1=0 .
$$

Contradiction.

Counterexample 7: For some a, x, and y,

$$
\frac{\log _{a}(x \cdot y)}{x} \neq \log _{a}(y) .
$$

Proof: Suppose by contradiction that

$$
\frac{\log _{a}(x \cdot y)}{x}=\log _{a}(y) .
$$

Hence, with $a=y=2$ and $x=1 / 2$,

$$
\frac{\log _{2}(1 / 2 \cdot 2)}{1 / 2}=\frac{\log _{2}(1)}{1 / 2}=\log _{2}(2),
$$

by substitution. But

$$
\log _{2}(1)=0 \text { and } \log _{2}(2)=1,
$$

by Theorems 2 and 1 of $W R$ no. 1 . So,

$$
\frac{0}{1 / 2}=0=1 \text {. }
$$

Contradiction.

