The Weekly Rigor

No. 11

"A mathematician is a machine for turning coffee into theorems."

September 6, 2014

Some Elementary Divisibility Properties

(Part 2)

Theorem 8:

If both $a \mid b$ and $a \nmid c$, then $b \nmid c$.

Proof: Suppose that both $a \mid b$ and $a \nmid c$. Hence, not both $a \mid b$ and $b \mid c$, by Theorem 7. So, either $a \nmid b$ or $b \nmid c$, by Definition 1. Therefore, $b \nmid c$,

Theorem 9: If both $a \mid b$ and $a \mid c$, then $a \mid (bx + cy)$ for any x and y.

Proof: Suppose that both $a \mid b$ and $a \mid c$. Hence, ad = b and ae = c for some d and e, by Definition 1. So, adx = bx and aey = cy. Thus a(dx + ey) = adx + aey = bx + cy. Therefore, $a \mid (bx + cy)$,

by Definition 1.

Theorem 10:

If $a \mid b$, then $a \mid bx$ for any x.

Proof: Suppose that $a \mid b$. $a \mid 0$, by Theorem 6. Hence, $a \mid (bx + 0 \cdot y)$ for any x and y, by Theorem 9. Therefore,

 $a \mid bx$.

Theorem 11:

If $a \nmid bc$, then both $a \nmid b$ and $a \nmid c$.

Proof: Suppose that either $a \mid b$ or $a \mid c$. Hence, in either case, $a \mid bc$, by Theorem 10. Therefore, if $a \nmid bc$, then neither $a \mid b$ nor $a \mid c$.

Theorem 12:	If $a \mid b$, then $ac \mid b$ for some c .
Proof: Suppose that $a \mid b$. H there exists an integer k such	ence, $b = ac$ for some c, by Definition 1. So, $b = ac \cdot 1$. Thus, that $b = ack$. Therefore, $ac \mid b$.
for some <i>c</i> , by Definition 1.	
Theorem 13:	If $a \mid b$, then $ac \mid bx$ for some c and any x .
Proof: Suppose that $a \mid b$. H	ence, $a \mid bx$ for any x, by Theorem 10. Therefore, $ac \mid bx$,
for some c and any x , by Theorem	orem 12.
Theorem 14:	If $a \nmid bc$, then both $a \nmid b$ and $a \nmid c$.
Proof: Suppose that either $a \mid b$ or $a \mid c$. WLOG, let $a \mid b$. Hence, $a \mid bc$, by Theorem 10. Therefore, If $a \nmid bc$, then neither $a \mid b$ nor $a \mid c$.	
Theorem 15:	If both $a \mid b$ and $a \mid c$, then $a \mid (b + c)$.
Proof: Suppose that both $a \mid b$ and $a \mid c$. Hence, $a \mid (b \cdot 1 + c \cdot 1)$, by Theorem 9. Therefore, $a \mid (b + c)$.	
Theorem 16:	If both $a \mid b$ and $a \mid c$, then $a \mid (b - c)$ and $a \mid (c - b)$.
Proof: Suppose that both $a \mid b$ and $a \mid c$. Hence, $a \mid (b \cdot 1 + c \cdot [-1])$ and $a \mid (b \cdot [-1] + c \cdot 1)$ by Theorem 9. So, $a \mid (b - c)$ and $a \mid (-b + c)$. Therefore, $a \mid (b - c)$ and $a \mid (c - b)$.	
Theorem 17:	If both $a \mid b$ and $a \mid (b + c)$, then $a \mid c$.
Proof: Suppose that both $a \mid$ Definition 1. So, $ak + c = al$,	<i>b</i> and $a \mid (b + c)$. Hence, $b = ak$ and $b + c = al$ for some <i>k</i> and <i>l</i> , by by substitution. Thus, $c = al - ak = a(l - k)$. Therefore,
by Definition 1.	u c, ■

"Only he who never plays, never loses."