# ©he 

# Some Elementary Divisibility Properties 

(Part 2)

Theorem 8:
If both $a \mid b$ and $a \nmid c$, then $b \nmid c$.
Proof: Suppose that both $a \mid b$ and $a \nmid c$. Hence, not both $a \mid b$ and $b \mid c$, by Theorem 7. So, either $a \nmid b$ or $b \nmid c$, by Definition 1. Therefore,

$$
b \nmid c,
$$

Theorem 9: If both $a \mid b$ and $a \mid c$, then $a \mid(b x+c y)$ for any $x$ and $y$.

Proof: Suppose that both $a \mid b$ and $a \mid c$. Hence, $a d=b$ and $a e=c$ for some $d$ and $e$, by Definition 1. So, $a d x=b x$ and $a e y=c y$. Thus $a(d x+e y)=a d x+a e y=b x+c y$. Therefore,

$$
a \mid(b x+c y),
$$

by Definition 1.

Theorem 10:
If $a \mid b$, then $a \mid b x$ for any $x$.
Proof: Suppose that $a|b . a| 0$, by Theorem 6. Hence, $a \mid(b x+0 \bullet y)$ for any $x$ and $y$, by Theorem 9. Therefore,

$$
a \mid b x .
$$

Theorem 11: If $a \nmid b c$, then both $a \nmid b$ and $a \nmid c$.

Proof: Suppose that either $a \mid b$ or $a \mid c$. Hence, in either case, $a \mid b c$, by Theorem 10. Therefore, if $a \nmid b c$, then neither $a \mid b$ nor $a \mid c$.

Theorem 12: If $a \mid b$, then $a c \mid b$ for some $c$.

Proof: Suppose that $a \mid b$. Hence, $b=a c$ for some $c$, by Definition 1. So, $b=a c \cdot 1$. Thus, there exists an integer $k$ such that $b=a c k$. Therefore, $a c \mid b$,
for some $c$, by Definition 1 .

Theorem 13: $\quad$ If $a \mid b$, then $a c \mid b x$ for some $c$ and any $x$.
Proof: Suppose that $a \mid b$. Hence, $a \mid b x$ for any $x$, by Theorem 10. Therefore, $a c \mid b x$,
for some $c$ and any $x$, by Theorem 12 .

Theorem 14: If $a \nmid b c$, then both $a \nmid b$ and $a \nmid c$.
Proof: Suppose that either $a \mid b$ or $a \mid c$. WLOG, let $a \mid b$. Hence, $a \mid b c$, by Theorem 10. Therefore, If $a \nmid b c$, then neither $a \mid b$ nor $a \mid c$.

Theorem 15: $\quad$ If both $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
Proof: Suppose that both $a \mid b$ and $a \mid c$. Hence, $a \mid(b \bullet 1+c \bullet 1)$, by Theorem 9. Therefore,

$$
a \mid(b+c)
$$

Theorem 16: $\quad$ If both $a \mid b$ and $a \mid c$, then $a \mid(b-c)$ and $a \mid(c-b)$.
Proof: Suppose that both $a \mid b$ and $a \mid c$. Hence, $a \mid(b \bullet 1+c \bullet[-1])$ and $a \mid(b \bullet[-1]+c \bullet 1)$ by Theorem 9. So, $a \mid(b-c)$ and $a \mid(-b+c)$. Therefore,

$$
a \mid(b-c) \text { and } a \mid(c-b)
$$

Theorem 17:
If both $a \mid b$ and $a \mid(b+c)$, then $a \mid c$.
Proof: Suppose that both $a \mid b$ and $a \mid(b+c)$. Hence, $b=a k$ and $b+c=a l$ for some $k$ and $l$, by Definition 1. So, $a k+c=a l$, by substitution. Thus, $c=a l-a k=a(l-k)$. Therefore,

$$
a \mid c
$$

by Definition 1.

