The Weekly Rigor

No. 12

"A mathematician is a machine for turning coffee into theorems."

September 13, 2014

Some Elementary Divisibility Properties (Part 3)

Theorem 18:

If $a \mid b$, then $a \mid -b$.

Proof: Suppose that $a \mid b$. Hence, $a \mid b \bullet (-1)$, by Theorem 10. Therefore, $a \mid -b$.

Theorem 19:

If $a \mid b$, then $-a \mid b$.

Proof: Suppose that a | b. Hence, a | -b, by Theorem 18. So, ac = -b for some *c*, by Definition 1. Thus, -ac = b. Therefore,

by Definition 1.

Theorem 20:

 $-a \mid b,$

EXAMPLE If a | b, then -a | -b.

Proof: Suppose that $a \mid b$. Hence, $a \mid -b$, by Theorem 18. Therefore, $-a \mid -b$,

by Theorem 19.

Theorem 21: If both $a \mid b$ and $a \mid (b - c)$, then $a \mid c$.

Proof: Suppose that both $a \mid b$ and $a \mid (b - c)$. Hence, $a \mid (b + [-c])$. So, $a \mid -c$, by Theorem 17. Thus, $a \mid -[-c]$, by Theorem 18. Therefore,

 $a \mid c$.

Theorem 22:	$a \mid$ - a .	
Proof: $a \mid a$, by Theorem 3.	Therefore, $a \mid -a$,	
by Theorem 18.		
Theorem 23:	$-1 \mid a$ for every a .	
Proof: 1 <i>a</i> , by Theorem 4. by Theorem 19.	Therefore, $-1 \mid a$,	
Theorem 24:	If both $a \mid b$ and $c \mid d$, then $ac \mid bd$.	
	<i>b</i> and <i>c</i> <i>d</i> . Hence, $ae = b$ and $cf = d$ for some <i>e</i> and <i>f</i> , by ef = bd, by substitution. Therefore, $ac \mid bd$,	
Theorem 25:	If $ac \nmid bd$, then either $a \nmid b$ or $c \nmid d$.	
Proof: By Theorem 24 and Definition 1.		
Theorem 26:	If both $a \mid b$ and $a \mid c$, then $a^2 \mid bc$.	
Proof: Suppose that both $a \mid b$ and $a \mid c$. Hence, $aa \mid bc$, by Theorem 24. Therefore, $a^2 \mid bc$.		
Theorem 27:	$a \mid b$ if and only if $ac \mid bc$ for $c \neq 0$.	
Proof: Suppose that $a b. c c$, by Theorem 3. Therefore, $ac bc$ for $c \neq 0$, by Theorem 24. Suppose that $ac bc$ for $c \neq 0$. Hence, $acd = bc$ for some d , by Definition 1. So, since $c \neq 0$, $ad = b$. Therefore, $a b$, by Definition 1.		

"Only he who never plays, never loses."

Sing he who hever plugs, hever loses.		
Written and published every Saturday by Richard Shedenhelm	WeeklyRigor@gmail.com	