The Weekly Rigor

No. 13

"A mathematician is a machine for turning coffee into theorems."

September 20, 2014

Some Elementary Divisibility Properties

(Part 4)

Theorem 28: If both $a \mid b$ and $b \mid a$, then either a = b or a = -b.

Proof: Suppose that both $a \mid b$ and $b \mid a$. Hence, ac = b and bd = a for some c and d, by Definition 1. So, (ac)d = a(cd) = a, by substitution. Thus, cd = 1. Hence, either c = 1 = d or c = -1 = d. Therefore, either a = b or a = -b, by substitution.

Theorem 29: If *a* | *b*, then |*a*| |*b*|.

Proof: Suppose that $a \mid b$. Hence, ac = b for some *c*, by Definition 1. So, $|ac| = |a| \cdot |c| = |b|$. Therefore,

by Definition 1.

Theorem 30:

If both $a \mid b$ and $b \neq 0$, then $|a| \leq |b|$.

Proof: Suppose that both $a \mid b$ and $b \neq 0$. Hence, $|a| \mid |b|$, by Theorem 29. So, |a|c = |b| for some *c*, by Definition 1. Since $b \neq 0$, |b| > 0. Thus, c > 0. Therefore, $|a| \leq |b|$.

Theorem 31: If both *a* and *b* are positive integers and $a \mid b$, then $1 \le a \le b$.

Proof: Suppose that both *a* and *b* are positive integers and $a \mid b$. Hence, $b \neq 0$. So, $|a| \leq |b|$, by Theorem 30. Furthermore, |a| = a, |b| = b, and $1 \leq a$. Therefore,

 $1 \le a \le b$,

by substitution.

|a| | |b|,

Theorem 32: If both *a* and *b* are positive integers and a > b, then $a \nmid b$.

Proof: Suppose that both *a* and *b* are positive integers and a > b. Suppose by contradiction that $a \mid b$. Hence, $1 < a \le b$, by Theorem 31. So, $a \ne b$. Contradiction. Therefore, $a \ne b$.

Theorem 33: If a, b > 1 and $a \mid b$, then $a \nmid (b + 1)$.

Proof: Suppose that a, b > 1 and $a \mid b$. Suppose by contradiction that $a \mid (b + 1)$. Hence, $a \mid 1$, by Theorem 17. So, $a \le 1$, by Theorem 31. Thus, $a \ge 1$. Contradiction. Therefore, $a \nmid (b + 1)$.

Theorem 34: If a, b > 1, a | b, and a | (b + 2), then <math>a = 2.

Proof: Suppose that $a, b > 1, a \mid b$, and $a \mid (b + 2)$. Hence, $a \mid 2$, by Theorem 17. So, $1 < a \le 2$, by Theorem 31. Therefore, a = 2.

Theorem 35: If a, b > 1, a | b, and a | (b + 3), then <math>a = 3.

Proof: Suppose that $a, b > 1, a \mid b$, and $a \mid (b + 3)$. Hence, $a \mid 3$, by Theorem 17. So, $1 < a \le 3$, by Theorem 31. Thus, either a = 2 or a = 3. Suppose that a = 2. Hence, $2 \mid b$ and $2 \mid (b + 3)$, by substitution. $2 \mid 2$, by Theorem 3. So, $2 \mid (b + 2)$, by Theorem 15. Thus, $2 \mid ([b + 3] - [b + 2])$, viz., $2 \mid 1$, by Theorem 16. But since $2 > 1, 2 \nmid 1$, by Theorem 32. Hence, $a \neq 2$. Therefore, a = 3.

Theorem 36: If $a \mid b$ and $a \nmid c$, then $a \nmid (b + c)$.

Proof: Suppose that $a \mid b$ and $a \nmid c$. Hence, not both $a \mid b$ and $a \mid (b + c)$, by Theorem 17. So, either $a \nmid b$ or $a \nmid (b + c)$, by Definition 1. Therefore, $a \nmid (b + c)$.

"Only he who never plays, never loses."