©he

Some Elementary Divisibility Properties

(Part 4)

Theorem 28: If both $a \mid b$ and $b \mid a$, then either $a=b$ or $a=-b$.
Proof: Suppose that both $a \mid b$ and $b \mid a$. Hence, $a c=b$ and $b d=a$ for some c and d, by Definition 1. So, $(a c) d=a(c d)=a$, by substitution. Thus, $c d=1$. Hence, either $c=1=d$ or $c=-1=d$. Therefore, either $a=b$ or $a=-b$, by substitution.

Theorem 29: If $a \mid b$, then $|a|||b|$.

Proof: Suppose that $a \mid b$. Hence, $a c=b$ for some c, by Definition 1. So, $|a c|=|a| \cdot|c|=|b|$. Therefore,

$$
|a|||b|,
$$

by Definition 1 .

Theorem 30: If both $a \mid b$ and $b \neq 0$, then $|a| \leq|b|$.

Proof: Suppose that both $a \mid b$ and $b \neq 0$. Hence, $|a|||b|$, by Theorem 29. So, $| a|c=|b|$ for some c, by Definition 1. Since $b \neq 0,|b|>0$. Thus, $c>0$. Therefore,

$$
|a| \leq|b| .
$$

Theorem 31: \quad If both a and b are positive integers and $a \mid b$, then $1 \leq a \leq b$.
Proof: Suppose that both a and b are positive integers and $a \mid b$. Hence, $b \neq 0$. So, $|a| \leq|b|$, by Theorem 30. Furthermore, $|a|=a,|b|=b$, and $1 \leq a$. Therefore,

$$
1 \leq a \leq b
$$

by substitution.

Theorem 32: If both a and b are positive integers and $a>b$, then $a \nmid b$.
Proof: Suppose that both a and b are positive integers and $a>b$. Suppose by contradiction that $a \mid b$. Hence, $1<a \leq b$, by Theorem 31. So, $a \ngtr b$. Contradiction. Therefore,

$$
a \nmid b .
$$

Theorem 33: If $a, b>1$ and $a \mid b$, then $a \nmid(b+1)$.
Proof: Suppose that $a, b>1$ and $a \mid b$. Suppose by contradiction that $a \mid(b+1)$. Hence, $a \mid 1$, by Theorem 17. So, $a \leq 1$, by Theorem 31. Thus, $a>1$. Contradiction. Therefore,

$$
a \nmid(b+1) .
$$

Theorem 34: \quad If $a, b>1, a \mid b$, and $a \mid(b+2)$, then $a=2$.
Proof: Suppose that $a, b>1, a \mid b$, and $a \mid(b+2)$. Hence, $a \mid 2$, by Theorem 17. So, $1<a \leq 2$, by Theorem 31. Therefore, $a=2$.

Theorem 35: If $a, b>1, a \mid b$, and $a \mid(b+3)$, then $a=3$.
Proof: Suppose that $a, b>1, a \mid b$, and $a \mid(b+3)$. Hence, $a \mid 3$, by Theorem 17. So, $1<a \leq 3$, by Theorem 31. Thus, either $a=2$ or $a=3$. Suppose that $a=2$. Hence, $2 \mid b$ and $2 \mid(b+3)$, by substitution. $2 \mid 2$, by Theorem 3. So, $2 \mid(b+2)$, by Theorem 15. Thus, $2 \mid([b+3]-[b+2])$, viz., $2 \mid 1$, by Theorem 16. But since $2>1,2 \nmid 1$, by Theorem 32. Hence, $a \neq 2$. Therefore, $a=3$.

Theorem 36: If $a \mid b$ and $a \nmid c$, then $a \nmid(b+c)$.
Proof: Suppose that $a \mid b$ and $a \nmid c$. Hence, not both $a \mid b$ and $a \mid(b+c)$, by Theorem 17. So, either $a \nmid b$ or $a \nmid(b+c)$, by Definition 1. Therefore,

$$
a \nmid(b+c) .
$$

