The 调eekly inigur

Even and Odd Integers: Some Consequences of the Basic Properties

(Part 4)

Theorem 12: a and b are either both even or both odd if and only if $(a+b)^{2}$ is even.
Proof: Suppose that a and b are either both even or both odd.
Case 1: Suppose that a and b are both even. Hence, $a+b$ is even, by Theorem 9 of $W R$ no. 15. So, $(a+b)^{2}$ is even, by Theorem 2.
Case 2: Suppose that a and b are both odd. Hence, $a+b$ is even, by Theorem 11 of $W R$ no. 15. So, $(a+b)^{2}$ is even, by Theorem 2.
In either case, $(a+b)^{2}$ is even.
Suppose that $(a+b)^{2}$ is even. Hence, $a+b$ is even, by Theorem 5. So, $a+b$ is not odd, by Theorem 1 of $W R$ no. 14. Thus, a and b are either both even or both odd, by Theorem 10 of $W R$ no. 15.

Theorem 13: If a, b, and c are all odd, then the roots of $a x^{2}+b x+c=0$ are not rational.
Proof: Suppose that $a x^{2}+b x+c=0(a \neq 0)$ has a rational root. Hence, there exist integers m and n such that $x=m / n$ and $a(m / n)^{2}+b(m / n)+c=0$. So, $a m^{2}+b m n+c n^{2}=0$.

Suppose by contradiction that a, b, and c are all odd. Either both m and n are even or at least one of m, n is odd.

Case 1: Suppose that both m and n are even. Hence, $a m^{2}, b m n$, and $c n^{2}$ are all even. So, $a m^{2}+b m n+c n^{2}$ is even (and $a \neq 0$). Thus, $2 \mid\left(a m^{2}+b m n+c n^{2}\right)$, by Definition 1 of $W R$ no. 14. Hence, $2 \mid 0$, by substitution. But $2 \mid 0$, by Theorem 32 of $W R$ no. 13.
Contradiction.
Case 2: Suppose that at least one of m, n is odd. WLOG, let m by odd. Hence, since a is odd, $a m^{2}$ is odd. So, since 0 is even, $b m n+c n^{2}$ is odd. Thus, either $b m n$ is even and $c n^{2}$ is odd, or $b m n$ is odd and $c n^{2}$ is even.

Case 2a: Suppose that $b m n$ is even and $c n^{2}$ is odd. Hence, since both b and m are odd, n is even. So, since c is odd, $c n^{2}$ is even. Contradiction.
Case 2b: Suppose that $b m n$ is odd and $c n^{2}$ is even. Hence, since $b m n$ is odd, n is odd. So, since c is odd, $c n^{2}$ is odd. Contradiction.
In all cases, a contradiction results. Consequently, at least one of a, b, and c is not odd.
Therefore, by contraposition, if a, b, and c are all odd, then the roots of $a x^{2}+b x+c=0$ are not rational.

Theorem 14: For any primitive Pythagorean triple a, b, c such that $a^{2}+b^{2}=c^{2}$, exactly one of a, b is even and c is odd.

Preliminary Remark: A primitive Pythagorean triple is a Pythagorean triple where the three integers are coprime, i.e., the only common positive integer factor of the three numbers is 1 .

Proof: Suppose that a, b, c is a primitive Pythagorean triple such that $a^{2}+b^{2}=c^{2}$. If a and b were both even, then c would also be even, by Theorem 9 of $W R$ no. 15 . But then a, b, and c would not be coprime, since they would share a common factor of 2 . Hence, a and b cannot both be even.

Suppose by contradiction that both a and b are odd. Hence, c is even, by Theorem 11 of $W R$ no. 15. So, $a=2 k+1, b=2 l+1$, and $c=2 m$, for some integers k, l, and m, by Theorems 2 and 7 of $W R$ no. 14. Thus, $(2 k+1)^{2}+(2 l+1)^{2}=(2 m)^{2}$, by substitution. Hence, $4 k^{2}+4 k+1+$ $+4 l^{2}+4 l+1=4 m^{2}$. So, $2 k^{2}+2 k+2 l^{2}+2 l+1=2 m^{2}$. Thus, $2\left(k^{2}+k+l^{2}+l\right)+1=2 m^{2}$. Hence, the same number is both odd and even, by Theorems 2 and 7 of $W R$ no. 14. Contradiction. Therefore, exactly one of a, b is even, and hence c is odd.

Theorem 15: $\quad a-b$ is even if and only if $a+b$ is even.
Proof: Suppose that $a-b$ is even. Hence, $a-b=2 n$ for some n, by Theorem 2 of $W R$ no. 14 . So, $a+b=(2 n+b)+b=2(n+b)$. Thus, $a+b$ is even, by Theorem 2 of $W R$ no. 14 .

Suppose that $a+b$ is even. Hence, $a+b=2 m$ for some m, by Theorem 2 of $W R$ no. 14 . Suppose by contradiction that $a-b$ is odd. Hence, $a-b=2 n+1$ for some n, by Theorem 7 of $W R$ no. 14. So, $(2 n+1+b)+b=2 m$. Thus, $2(n+b)+1=2 m$. Hence, the same number is both odd and even, by Theorems 2 and 7 of $W R$ no. 14. Contradiction. Therefore, $a-b$ is even.

Theorem 16: \quad If a is odd, then $a^{2}=8 q+1$ for some q.
Proof: Suppose that a is odd. Hence, $a=2 k+1$ for some k, by Theorem 7 of $W R$ no. 14. So, $a^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=4 k(k+1)+1$. Hence, since $k(k+1)$ is even, $k(k+1)=2 q$ for some q, by Theorem 2 of $W R$ no. 14. Therefore, $a^{2}=4(2 q)+1=8 q+1$, by substitution.

Theorem 17: If a and b are odd, then $a^{2}-b^{2}=8 q$ for some q.

Proof: Suppose that a and b are odd. Hence, $a=2 k+1$ and $b=2 l+1$ for some k and l by Theorem 7 of $W R$ no. 14. So, $a^{2}-b^{2}=(2 k+1)^{2}-(2 l+1)^{2}=4 k^{2}+4 k+1-\left(4 l^{2}+4 l+1\right)=$ $=4 k^{2}+4 k+1-4 l^{2}-4 l-1=4\left(k^{2}-l^{2}+k-l\right)=4([k-l][k+l]+[k-l])=4(k-l)(k+l+1)$. Exactly one of $(k-l)$ and $(k+l+1)$ is even, by Theorem 15. Thus, either $a^{2}-b^{2}=$ $=4(2 n)(k+l+1)=8 n(k+l+1)$ or $a^{2}-b^{2}=4(k-l)(2 n)=8 n(k-l)$ for some n, by Theorem 2 of $W R$ no. 14. Therefore, $a^{2}-b^{2}=8 q$ for some q.

