

51 Problems in Calculating Limits Using L'Hôpital's Rule with Solutions
50. Let $y=\left(1+\frac{x}{n}\right)^{n}$.

Hence, $\ln (y)=\ln \left[\left(1+\frac{x}{n}\right)^{n}\right]=n \ln \left(1+\frac{x}{n}\right)=\frac{\ln \left(1+\frac{x}{n}\right)}{\frac{1}{n}}$.
So, $\lim _{n \rightarrow \infty} \ln (y)=\lim _{n \rightarrow \infty} \frac{\ln \left(1+\frac{x}{n}\right)}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\ln \left(\frac{n+x}{n}\right)}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{\ln (n+x)-\ln (n)}{n^{-1}} \stackrel{L H}{\cong} \lim _{n \rightarrow \infty} \frac{\left(\frac{1}{n+x}-\frac{1}{n}\right)}{-n^{-2}}=\lim _{n \rightarrow \infty} \frac{\left(\frac{n-n-x}{n(n+x)}\right)}{\left(\frac{-1}{n^{2}}\right)}=$
$=\lim _{n \rightarrow \infty} \frac{-x}{n(n+x)} \cdot \frac{n^{2}}{-1}=\lim _{n \rightarrow \infty} \frac{n x}{n+x}=\lim _{n \rightarrow \infty} \frac{n x}{n\left(1+\frac{x}{n}\right)}=\lim _{n \rightarrow \infty} \frac{x}{\left(1+\frac{x}{n}\right)}=\frac{x}{1+0}=x$.
That is, $\lim _{n \rightarrow \infty} \ln (y)=x$.
Now $y=y \Leftrightarrow \ln (y)=\ln (y) \Leftrightarrow e^{\ln (y)}=y$. Therefore, $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=\lim _{n \rightarrow \infty} y=$
$=\lim _{n \rightarrow \infty} e^{\ln (y)}=e^{\lim _{n \rightarrow \infty} \ln (y)}=e^{x}$.
51. Let $y=\left(1+\frac{r}{n}\right)^{n t}$.

> Hence, $\ln (y)=\ln \left[\left(1+\frac{r}{n}\right)^{n t}\right]=n t \ln \left(1+\frac{r}{n}\right)=\frac{\operatorname{tln}\left(1+\frac{r}{n}\right)}{\frac{1}{n}}=\frac{t \ln \left(\frac{n+r}{n}\right)}{\frac{1}{n}}=$
> $=\frac{t \ln (n+r)-t \ln (n)}{\frac{1}{n}}$

So, $\lim _{n \rightarrow \infty} \ln (y)=\lim _{n \rightarrow \infty} \frac{t \ln (n+r)-t \ln (n)}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{t \ln (n+r)-t \ln (n)}{n^{-1}} \stackrel{L H}{=} \lim _{n \rightarrow \infty} \frac{t}{n+r}-\frac{t}{n} n^{-2}=\lim _{n \rightarrow \infty} \frac{t}{\frac{t}{n+r}-\frac{t}{n}} \frac{-1}{n^{2}}=$
$=\lim _{n \rightarrow \infty}\left(\frac{-t n^{2}}{n+r}+\frac{t n^{2}}{n}\right)=\lim _{n \rightarrow \infty} \frac{-t n^{3}+t n^{3}+r t n^{2}}{n(n+r)}=\lim _{n \rightarrow \infty} \frac{r t n}{n+r}=\lim _{n \rightarrow \infty} \frac{r t n}{n\left(1+\frac{r}{n}\right)}=$
$=\lim _{n \rightarrow \infty} \frac{r t}{1+\frac{r}{n}}=\frac{r t}{1+0}=r t$.
That is, $\lim _{n \rightarrow \infty} \ln (y)=r t$.
Now $y=y \Leftrightarrow \ln (y)=\ln (y) \Leftrightarrow e^{\ln (y)}=y$. Therefore, $\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n t}=\lim _{n \rightarrow \infty} y=$ $=\lim _{n \rightarrow \infty} e^{\ln (y)}=e^{\lim _{n \rightarrow \infty} \ln (y)}=e^{r t}$.

