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51 Problems in Calculating Limits Using L’Hôpital’s Rule with Solutions 
(Part 10) 

 

SOME BACKGROUND MATHEMATICAL FACTS USEFUL IN 

CALCULATING LIMITS USING L’HÔPITAL’S RULE 

 

 

𝑒0 = 1     ln(1) = 0   ln(𝑒) = 1 
 

sin(0) = 0    cos(0) = 1   tan(0) = 0 
 

sin(𝜋
2
) = 1    cos(𝜋

2
) = 0   cot(𝜋

2
) = 0 

 

sin(𝜋) = 0    cos(𝜋) = −1   tan(𝜋) = 0 

 

lim
𝑥→∞

1

𝑥
= 0   𝑎 =

1

(
1
𝑎
)
 

 

ln(𝑎𝑏) = ln(𝑎) + ln(𝑏)  ln(𝑎𝑐) = 𝑐 ln(𝑎) 
 

 

ln(𝑎
𝑏
) = ln(𝑎) − ln(𝑏)  𝑒ln(𝑥) = 𝑥 

 

 

   tan(𝑥) =
sin(𝑥)

cos(𝑥)
   cot(𝑥) =

cos(𝑥)

sin(𝑥)
 

 

sec(𝑥) =
1

cos(𝑥)
   csc(𝑥) =

1

sin(𝑥)
  cot(𝑥) =

1

tan(𝑥)
 

 

 

[𝑒𝑥]′ = 𝑒𝑥   [sin(𝑥)]′ = cos(𝑥)   [sec(𝑥)]′ = sec(𝑥) tan(𝑥) 
 

 

[ln(𝑥)]′ =
1

𝑥
   [cos(𝑥)]′ = −sin(𝑥)   [csc(𝑥)]′ = −csc(𝑥) cot(𝑥) 

 

 

[𝑎𝑥]′ = 𝑎𝑥 ln(𝑎)  [tan(𝑥)]′ = sec (𝑥)2    [cot(𝑥)]′ = −csc (𝑥)2  

 

 

  



TWO APPLICATIONS OF L’HÔPITAL’S RULE TO COMPARING 

THE RATES OF GROWTH OF THREE FUNCTIONS 

 

 

Theorem 1:  lim
𝑥→∞

𝑒𝑥

𝑥𝑛
= ∞ for any integer n. 

 

Preliminary Remark:  This theorem shows that the exponential function approaches infinity 

faster than any power of x.  

 

Proof:  lim
𝑥→∞

𝑒𝑥

𝑥𝑛
=⏞
𝐿𝐻

lim
𝑥→∞

𝑒𝑥

𝑛𝑥𝑛−1
=⏞
𝐿𝐻

lim
𝑥→∞

𝑒𝑥

𝑛(𝑛−1)𝑥𝑛−2
=⏞
𝐿𝐻

⋯ =⏞
𝐿𝐻

lim
𝑥→∞

𝑒𝑥

𝑛!
= ∞. 


 

 

Theorem 2:  lim
𝑥→∞

ln(𝑥)

𝑥𝑝
= 0 for any number p > 0. 

 

Preliminary Remark:  This theorem shows that the logarithmic function approaches infinity 

more slowly than any power of x. 

 

Proof:  lim
𝑥→∞

ln(𝑥)

𝑥𝑝
=⏞
𝐿𝐻

lim
𝑥→∞

1
𝑥

𝑝𝑥𝑝−1
= lim

𝑥→∞

1
𝑥
∙ 1

𝑝𝑥𝑝−1
= lim

𝑥→∞

1

𝑝𝑥𝑝
= 0. 
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