

51 Problems in Calculating Limits Using L'Hôpital's Rule with Solutions

```
e0}=
sin(0)=0
sin}(\frac{\pi}{2})=
sin(\pi)=0
```

$\ln (1)=0$	$\ln (e)=1$
$\cos (0)=1$	$\tan (0)=0$
$\cos \left(\frac{\pi}{2}\right)=0$	$\cot \left(\frac{\pi}{2}\right)=0$
$\cos (\pi)=-1$	$\tan (\pi)=0$

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

$$
\ln (a b)=\ln (a)+\ln (b)
$$

$$
\ln \left(\frac{a}{b}\right)=\ln (a)-\ln (b)
$$

$$
e^{\ln (x)}=x
$$

$$
\tan (x)=\frac{\sin (x)}{\cos (x)}
$$

$$
\cot (x)=\frac{\cos (x)}{\sin (x)}
$$

$$
\sec (x)=\frac{1}{\cos (x)}
$$

$$
\csc (x)=\frac{1}{\sin (x)}
$$

$$
\cot (x)=\frac{1}{\tan (x)}
$$

$\left[e^{x}\right]^{\prime}=e^{x}$
$[\sin (x)]^{\prime}=\cos (x)$
$[\sec (x)]^{\prime}=\sec (x) \tan (x)$
$[\ln (x)]^{\prime}=\frac{1}{x}$
$[\cos (x)]^{\prime}=-\sin (x)$
$[\csc (x)]^{\prime}=-\csc (x) \cot (x)$
$\left[a^{x}\right]^{\prime}=a^{x} \ln (a)$
$[\tan (x)]^{\prime}=\sec ^{2}(x)$
$[\cot (x)]^{\prime}=-\csc ^{2}(x)$

TWO APPLICATIONS OF L'HÔPITAL'S RULE TO COMPARING THE RATES OF GROWTH OF THREE FUNCTIONS

Theorem 1: $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}}=\infty$ for any integer n.
Preliminary Remark: This theorem shows that the exponential function approaches infinity faster than any power of x.

Proof: $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{n}} \stackrel{L H}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{n x^{n-1}} \stackrel{L H}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{n(n-1) x^{n-2}} \stackrel{L H}{\cong} \cdots \stackrel{L H}{=} \lim _{x \rightarrow \infty} \frac{e^{x}}{n!}=\infty$.

Theorem 2: $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{p}}=0$ for any number $p>0$.
Preliminary Remark: This theorem shows that the logarithmic function approaches infinity more slowly than any power of x.

Proof: $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{p}} \stackrel{L H}{=} \lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{p x^{p-1}}=\lim _{x \rightarrow \infty} \frac{1}{x} \cdot \frac{1}{p x^{p-1}}=\lim _{x \rightarrow \infty} \frac{1}{p x^{p}}=0$.

