The Weekly Rigor

No. 29

"A mathematician is a machine for turning coffee into theorems."

January 10, 2015

51 Problems in Calculating Limits Using L'Hôpital's Rule with Solutions (Part 10)

SOME BACKGROUND MATHEMATICAL FACTS USEFUL IN CALCULATING LIMITS USING L'HÔPITAL'S RULE

- $e^0 = 1$ ln(1) = 0 $\ln(e) = 1$ $\sin(0) = 0$ $\cos(0) = 1$ tan(0) = 0 $\cos\left(\frac{\pi}{2}\right) = 0 \qquad \qquad \cot\left(\frac{\pi}{2}\right) = 0$ $\sin\left(\frac{\pi}{2}\right) = 1$ $\cos(\pi) = -1$ $\tan(\pi) = 0$ $\sin(\pi) = 0$ $\lim_{r \to \infty} \frac{1}{r} = 0$ $a = \frac{1}{\left(\frac{1}{2}\right)}$ $\ln(ab) = \ln(a) + \ln(b)$ $\ln(a^c) = c \ln(a)$ $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$ $e^{\ln(x)} = x$ $\tan(x) = \frac{\sin(x)}{\cos(x)}$ $\cot(x) = \frac{\cos(x)}{\sin(x)}$ $\csc(x) = \frac{1}{\sin(x)} \qquad \qquad \cot(x) = \frac{1}{\tan(x)}$ $\sec(x) = \frac{1}{\cos(x)}$ $[e^{x}]' = e^{x}$ $[\sin(x)]' = \cos(x)$ $[\sec(x)]' = \sec(x)\tan(x)$
- $[\ln(x)]' = \frac{1}{r} \qquad [\cos(x)]' = -\sin(x) \qquad [\csc(x)]' = -\csc(x)\cot(x)$
- $[a^{x}]' = a^{x} \ln(a) \qquad [\tan(x)]' = \sec^{2}(x) \qquad [\cot(x)]' = -\csc^{2}(x)$

TWO APPLICATIONS OF L'HÔPITAL'S RULE TO COMPARING THE RATES OF GROWTH OF THREE FUNCTIONS

Theorem 1: $\lim_{x\to\infty} \frac{e^x}{x^n} = \infty$ for any integer *n*.

Preliminary Remark: This theorem shows that the exponential function approaches infinity faster than any power of *x*.

Proof: $\lim_{x\to\infty}\frac{e^x}{x^n} \stackrel{LH}{=} \lim_{x\to\infty}\frac{e^x}{nx^{n-1}} \stackrel{LH}{=} \lim_{x\to\infty}\frac{e^x}{n(n-1)x^{n-2}} \stackrel{LH}{=} \cdots \stackrel{LH}{=} \lim_{x\to\infty}\frac{e^x}{n!} = \infty.$

Theorem 2: $\lim_{x\to\infty} \frac{\ln(x)}{x^p} = 0$ for any number p > 0.

Preliminary Remark: This theorem shows that the logarithmic function approaches infinity more slowly than any power of *x*.

Proof: $\lim_{x \to \infty} \frac{\ln(x)}{x^p} \stackrel{LH}{\cong} \lim_{x \to \infty} \frac{\frac{1}{x}}{px^{p-1}} = \lim_{x \to \infty} \frac{1}{x} \cdot \frac{1}{px^{p-1}} = \lim_{x \to \infty} \frac{1}{px^p} = 0.$

"Only he who never plays, never loses."