©hy 相prkly Thigar

101 Problems in Calculating Trigonometric Limits with Solutions

(Part 4)

SOLUTIONS

Sine Group:

1. $\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)}=\lim _{\theta \rightarrow 0} \frac{1}{\left(\frac{\sin (\theta)}{\theta}\right)}=\frac{\lim _{\theta \rightarrow 0} 1}{\lim _{\theta \rightarrow 0}\left(\frac{\sin (\theta)}{\theta}\right)}=\frac{1}{1}=1$.
2. $\lim _{\theta \rightarrow 0} \frac{3 \sin (\theta)}{\theta}=\lim _{\theta \rightarrow 0} 3 \cdot \frac{\sin (\theta)}{\theta}=\lim _{\theta \rightarrow 0} 3 \cdot \lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=3 \cdot 1=3$.
3. $\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{\theta}=\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{\theta} \cdot \frac{3}{3}=\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \frac{3}{1}=\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \lim _{\theta \rightarrow 0} 3=1 \cdot 3=3$.

Remark: $3 \theta \rightarrow 0$ as $\theta \rightarrow 0$. That is why we can $\operatorname{say} \lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta}=1$. Similar cases will arise in some of the following solutions.
4. $\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{\sin (4 \theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{1} \cdot \frac{1}{\sin (4 \theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{1} \cdot \frac{3 \theta}{3 \theta} \cdot \frac{1}{\sin (4 \theta)} \cdot \frac{4 \theta}{4 \theta}=$

$$
\begin{aligned}
& =\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \frac{3 \theta}{1} \cdot \frac{4 \theta}{\sin (4 \theta)} \cdot \frac{1}{4 \theta}=\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \frac{4 \theta}{\sin (4 \theta)} \cdot \frac{3 \theta}{4 \theta}=\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \frac{4 \theta}{\sin (4 \theta)} \cdot \frac{3}{4}= \\
& =\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{4 \theta}{\sin (4 \theta)} \cdot \lim _{\theta \rightarrow 0} \frac{3}{4} \stackrel{\# 1}{=} 1 \cdot 1 \cdot \frac{3}{4}=\frac{3}{4} .
\end{aligned}
$$

5. $\lim _{\theta \rightarrow 0^{+}} \frac{\theta}{\sin (\sqrt{\theta})}=\lim _{\theta \rightarrow 0^{+}} \frac{\sqrt{\theta}}{\sin (\sqrt{\theta})} \cdot \frac{\sqrt{\theta}}{1}=\lim _{\theta \rightarrow 0^{+}} \frac{\sqrt{\theta}}{\sin (\sqrt{\theta})} \cdot \lim _{\theta \rightarrow 0^{+}} \sqrt{\theta}=\lim _{\theta \rightarrow 0^{+}} \frac{\sqrt{\theta}}{\sin (\sqrt{\theta})} \cdot \sqrt{\lim _{\theta \rightarrow 0^{+}} \theta} \stackrel{\# 1}{\cong}$ $\stackrel{\# 1}{\cong} 1 \cdot \sqrt{0}=1 \cdot 0=0$.
6. $\lim _{\theta \rightarrow 0^{+}} \frac{\sin (\theta)}{\sqrt{\theta}}=\lim _{\theta \rightarrow 0^{+}} \frac{\sin (\theta)}{\sqrt{\theta}} \cdot \frac{\sqrt{\theta}}{\sqrt{\theta}}=\lim _{\theta \rightarrow 0^{+}} \frac{\sin (\theta)}{\theta} \cdot \frac{\sqrt{\theta}}{1}=\lim _{\theta \rightarrow 0^{+}} \frac{\sin (\theta)}{\theta} \cdot \lim _{\theta \rightarrow 0^{+}} \sqrt{\theta}=$ $=\lim _{\theta \rightarrow 0^{+}} \frac{\sin (\theta)}{\theta} \cdot \sqrt{\lim _{\theta \rightarrow 0^{+}} \theta}=1 \cdot \sqrt{0}=1 \cdot 0=0$.
7. $\lim _{\theta \rightarrow 0} \theta \csc (\theta)=\lim _{\theta \rightarrow 0} \theta \cdot \frac{1}{\sin (\theta)}=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \stackrel{\# 1}{\cong} 1$.
8. $\lim _{\theta \rightarrow 0} \frac{\sin (-3 \theta)}{4 \theta}=\lim _{\theta \rightarrow 0} \frac{-\sin (3 \theta)}{4 \theta}=\lim _{\theta \rightarrow 0} \frac{-1}{4} \cdot \frac{\sin (3 \theta)}{\theta}=-\frac{1}{4} \lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{\theta}=$

$$
=-\frac{1}{4} \lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{\theta} \cdot \frac{3}{3}=-\frac{3}{4} \lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta}=-\frac{3}{4}(1)=-\frac{3}{4} .
$$

Alternate Solution:

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\sin (-3 \theta)}{4 \theta}=\frac{1}{4} \lim _{\theta \rightarrow 0} \frac{\sin (-3 \theta)}{\theta}=\frac{1}{4} \lim _{\theta \rightarrow 0} \frac{\sin (-3 \theta)}{\theta} \cdot \frac{-3}{-3}=\frac{-3}{4} \lim _{\theta \rightarrow 0} \frac{\sin (-3 \theta)}{-3 \theta}= \\
& =\frac{-3}{4} \cdot(1)=\frac{-3}{4} .
\end{aligned}
$$

Let a and b be nonzero numbers.
9. $\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{b \theta}=\lim _{\theta \rightarrow 0} \frac{1}{b} \cdot \frac{\sin (\theta)}{\theta}=\frac{1}{b} \lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{\theta}=\frac{1}{b} \lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{\theta} \cdot \frac{a}{a}=\frac{a}{b} \lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{a \theta}$.

$$
=\frac{a}{b} \cdot 1=\frac{a}{b} .
$$

Let a and b be nonzero numbers.
10. $\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{\sin (b \theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{1} \cdot \frac{1}{\sin (b \theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{1} \cdot \frac{1}{\sin (b \theta)} \cdot \frac{a b \theta}{a b \theta}=$

$$
=\frac{a}{b} \lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{a \theta} \cdot \frac{b \theta}{\sin (b \theta)}=\frac{a}{b} \lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{a \theta} \cdot \lim _{\theta \rightarrow 0} \frac{b \theta}{\sin (b \theta)} \stackrel{\# 1}{\neq} \frac{a}{b} \cdot 1 \cdot 1=\frac{a}{b} .
$$

Let k be a nonzero number.
11. $\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(k \theta)}{\theta^{2}}=\lim _{\theta \rightarrow 0} \frac{\sin (k \theta)}{\theta} \cdot \frac{\sin (k \theta)}{\theta}=\lim _{\theta \rightarrow 0} \frac{\sin (k \theta)}{\theta} \cdot \frac{\sin (k \theta)}{\theta} \cdot \frac{k^{2}}{k^{2}}=$

$$
=\lim _{\theta \rightarrow 0} \frac{\sin (k \theta)}{k \theta} \cdot \frac{\sin (k \theta)}{k \theta} \cdot \frac{k^{2}}{1}=\lim _{\theta \rightarrow 0} \frac{\sin (k \theta)}{k \theta} \cdot \lim _{\theta \rightarrow 0} \frac{\sin (k \theta)}{k \theta} \cdot \lim _{\theta \rightarrow 0} \frac{k^{2}}{1}=
$$

$$
=\lim _{\theta \rightarrow 0} \frac{\sin (k \theta)}{k \theta} \cdot \lim _{\theta \rightarrow 0} \frac{\sin (k \theta)}{k \theta} \cdot k^{2}=1 \cdot 1 \cdot k^{2}=k^{2}
$$

