©hy 㲘prkly Titur

101 Problems in Calculating Trigonometric Limits with Solutions

(Part 6)

23. $\lim _{\theta \rightarrow 0} \frac{\theta^{2}}{1-\cos (\theta)}=\lim _{\theta \rightarrow 0} \frac{\theta}{1} \cdot \frac{\theta}{1-\cos (\theta)}=\lim _{\theta \rightarrow 0} \frac{\theta}{1} \cdot \frac{\theta}{1-\cos (\theta)} \cdot \frac{1+\cos (\theta)}{1+\cos (\theta)}=$
$=\lim _{\theta \rightarrow 0} \frac{\theta}{1} \cdot \frac{\theta[1+\cos (\theta)]}{1-\cos ^{2} \theta}=\lim _{\theta \rightarrow 0} \frac{\theta}{1} \cdot \frac{\theta[1+\cos (\theta)]}{\sin ^{2} \theta}=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \cdot \frac{\theta}{\sin (\theta)} \cdot \frac{[1+\cos (\theta)]}{1}=$
$=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \cdot \lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \cdot \lim _{\theta \rightarrow 0} \frac{[1+\cos (\theta)]}{1}=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \cdot \lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \cdot \frac{\lim _{\theta \rightarrow 0}[1+\cos (\theta)]}{\lim _{\theta \rightarrow 0} 1} \stackrel{\neq 1}{=}$
$\stackrel{\# 1}{\approx} 1 \cdot 1 \cdot \frac{1+\cos (0)}{1}=\frac{1+1}{1}=2$.
24. $\lim _{\theta \rightarrow 0} \frac{1-\cos (5 \theta)}{\cos (7 \theta)-1}=\lim _{\theta \rightarrow 0} \frac{1-\cos (5 \theta)}{-[1-\cos (7 \theta)]}=-\lim _{\theta \rightarrow 0} \frac{1-\cos (5 \theta)}{1-\cos (7 \theta)} \cdot \frac{1+\cos (5 \theta)}{1+\cos (5 \theta)} \cdot \frac{1+\cos (7 \theta)}{1+\cos (7 \theta)}=$

$$
=-\lim _{\theta \rightarrow 0} \frac{1-\cos ^{2}(5 \theta)}{1-\cos ^{2}(7 \theta)} \cdot \frac{1+\cos (7 \theta)}{1+\cos (5 \theta)}=-\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(5 \theta)}{\sin ^{2}(7 \theta)} \cdot \frac{1+\cos (7 \theta)}{1+\cos (5 \theta)}=
$$

$$
=-\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(5 \theta)}{\sin ^{2}(7 \theta)} \cdot \lim _{\theta \rightarrow 0} \frac{1+\cos (7 \theta)}{1+\cos (5 \theta)}=-\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(5 \theta)}{\sin ^{2}(7 \theta)} \cdot \frac{\lim _{\theta \rightarrow 0}[1+\cos (7 \theta)]}{\lim _{\theta \rightarrow 0}[1+\cos (5 \theta)]}=
$$

$$
-\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(5 \theta)}{\sin ^{2}(7 \theta)} \cdot \frac{1+\cos (0)}{1+\cos (0)}=-\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(5 \theta)}{\sin ^{2}(7 \theta)} \cdot \frac{1+1}{1+1}=-\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(5 \theta)}{\sin ^{2}(7 \theta)} \cdot \frac{2}{2}=
$$

$$
=-\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(5 \theta)}{\sin ^{2}(7 \theta)}=-\lim _{\theta \rightarrow 0} \frac{\sin (5 \theta)}{\sin (7 \theta)} \cdot \frac{\sin (5 \theta)}{\sin (7 \theta)}=
$$

$$
=-\lim _{\theta \rightarrow 0} \frac{\sin (5 \theta)}{1} \cdot \frac{\sin (5 \theta)}{1} \cdot \frac{1}{\sin (7 \theta)} \cdot \frac{1}{\sin (7 \theta)} \cdot \frac{25 \theta^{2}}{25 \theta^{2}} \cdot \frac{49 \theta^{2}}{49 \theta^{2}}=
$$

$$
=-\lim _{\theta \rightarrow 0} \frac{\sin (5 \theta)}{5 \theta} \cdot \frac{\sin (5 \theta)}{5 \theta} \cdot \frac{7 \theta}{\sin (7 \theta)} \cdot \frac{7 \theta}{\sin (7 \theta)} \cdot \frac{25 \theta^{2}}{49 \theta^{2}}=
$$

$$
=-\lim _{\theta \rightarrow 0} \frac{\sin (5 \theta)}{5 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{\sin (5 \theta)}{5 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{7 \theta}{\sin (7 \theta)} \cdot \lim _{\theta \rightarrow 0} \frac{7 \theta}{\sin (7 \theta)} \cdot \lim _{\theta \rightarrow 0} \frac{25 \theta^{2}}{49 \theta^{2}} \stackrel{\text { \#1 }}{=}
$$

$$
\stackrel{\text { \#1 }}{\cong}-\left(1 \cdot 1 \cdot 1 \cdot 1 \cdot \frac{25}{49}\right)=-\frac{25}{49}
$$

25. $\lim _{\theta \rightarrow 0} \frac{1-2 \theta^{2}-2 \cos (\theta)+\cos ^{2}(\theta)}{\theta^{2}}=\lim _{\theta \rightarrow 0} \frac{1-2 \theta^{2}-2 \cos (\theta)+1-\sin ^{2}(\theta)}{\theta^{2}}=$
$=\lim _{\theta \rightarrow 0} \frac{2-2 \theta^{2}-2 \cos (\theta)-\sin ^{2}(\theta)}{\theta^{2}}=\lim _{\theta \rightarrow 0}\left(\frac{2-2 \cos (\theta)}{\theta^{2}}-\frac{2 \theta^{2}+\sin ^{2}(\theta)}{\theta^{2}}\right)=$
$=\lim _{\theta \rightarrow 0} \frac{2[1-\cos (\theta)]}{\theta^{2}}-\lim _{\theta \rightarrow 0} \frac{2 \theta^{2}+\sin ^{2}(\theta)}{\theta^{2}}=2 \lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta^{2}}-\lim _{\theta \rightarrow 0} \frac{2 \theta^{2}+\sin ^{2}(\theta)}{\theta^{2}}=$
$=2 \lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta^{2}} \cdot \frac{1+\cos (\theta)}{1+\cos (\theta)}-\lim _{\theta \rightarrow 0}\left(2+\frac{\sin ^{2}(\theta)}{\theta^{2}}\right)=$
$=2 \lim _{\theta \rightarrow 0} \frac{1-\cos ^{2}(\theta)}{\theta^{2}(1+\cos (\theta))}-\lim _{\theta \rightarrow 0} 2-\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(\theta)}{\theta^{2}}=2 \lim _{\theta \rightarrow 0} \frac{\sin ^{2}(\theta)}{\theta^{2}(1+\cos (\theta))}-2-1=$
$=2 \lim _{\theta \rightarrow 0} \frac{\sin ^{2}(\theta)}{\theta^{2}} \cdot \frac{1}{1+\cos (\theta)}-3=2 \lim _{\theta \rightarrow 0} \frac{\sin ^{2}(\theta)}{\theta^{2}} \cdot \lim _{\theta \rightarrow 0} \frac{1}{1+\cos (\theta)}-3=$
$=2 \lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \cdot \lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \cdot \frac{\lim _{\theta \rightarrow 0} 1}{\lim _{\theta \rightarrow 0}[1+\cos (\theta)]}-3=2\left(1 \cdot 1 \cdot \frac{1}{1+\cos (0)}\right)-3=$
$=2\left(\frac{1}{1+1}\right)-3=2\left(\frac{1}{2}\right)-3=1-3=-2$.
26. $\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta^{2}}=\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta^{2}} \cdot \frac{1+\cos (\theta)}{1+\cos (\theta)}=\lim _{\theta \rightarrow 0} \frac{1-\cos ^{2}(\theta)}{\theta^{2}[1+\cos (\theta)]}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(\theta)}{\theta^{2}(1+\cos (\theta))}=\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \cdot \frac{\sin (\theta)}{\theta} \cdot \frac{1}{1+\cos (\theta)}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \cdot \lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \cdot \lim _{\theta \rightarrow 0} \frac{1}{1+\cos (\theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \cdot \lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \cdot \frac{\lim _{\theta \rightarrow 0} 1}{\lim _{\theta \rightarrow 0}[1+\cos (\theta)]}=$
$=1 \cdot 1 \cdot \frac{1}{1+\cos (0)}=\frac{1}{1+1}=\frac{1}{2}$.
