©hy 㲘prkly Titur

101 Problems in Calculating Trigonometric Limits with Solutions

(Part 8)
35. $\lim _{\theta \rightarrow 0} \frac{\tan (3 \theta)}{\tan (4 \theta)}=\lim _{\theta \rightarrow 0} \frac{\left(\frac{\sin (3 \theta)}{\cos (3 \theta)}\right)}{\left(\frac{\sin (4 \theta)}{\cos (4 \theta)}\right)}=\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{\cos (3 \theta)} \cdot \frac{\cos (4 \theta)}{\sin (4 \theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{1} \cdot \frac{1}{\sin (4 \theta)} \cdot \frac{\cos (4 \theta)}{\cos (3 \theta)}=$

$$
\begin{aligned}
& =\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{1} \cdot \frac{3 \theta}{3 \theta} \cdot \frac{1}{\sin (4 \theta)} \cdot \frac{4 \theta}{4 \theta} \cdot \frac{\cos (4 \theta)}{\cos (3 \theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \frac{4 \theta}{\sin (4 \theta)} \cdot \frac{3 \theta}{4 \theta} \cdot \frac{\cos (4 \theta)}{\cos (3 \theta)}= \\
& =\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{4 \theta}{\sin (4 \theta)} \cdot \lim _{\theta \rightarrow 0} \frac{3}{4} \cdot \lim _{\theta \rightarrow 0} \frac{\cos (4 \theta)}{\cos (3 \theta)}=1 \cdot 1 \cdot \frac{3}{4} \cdot \frac{\lim _{\theta \rightarrow 0} \cos (4 \theta)}{\lim _{\theta \rightarrow 0} \cos (3 \theta)}=\frac{3}{4} \cdot \frac{\cos (0)}{\cos (0)} \\
& =\frac{3}{4} \cdot \frac{1}{1}=\frac{3}{4}
\end{aligned}
$$

Alternate Solution:

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\tan (3 \theta)}{\tan (4 \theta)}=\lim _{\theta \rightarrow 0} \frac{\tan (3 \theta)}{1} \cdot \frac{1}{\tan (4 \theta)}=\lim _{\theta \rightarrow 0} \frac{\tan (3 \theta)}{3 \theta} \cdot \frac{4 \theta}{\tan (4 \theta)} \cdot \frac{3}{4}= \\
& =\lim _{\theta \rightarrow 0} \frac{\tan (3 \theta)}{3 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{4 \theta}{\tan (4 \theta)} \cdot \lim _{\theta \rightarrow 0} \frac{3^{\# 31} \frac{\# \# 32}{4} \stackrel{3}{=} 1 \cdot 1 \cdot \frac{3}{4}=\frac{3}{4} .}{}
\end{aligned}
$$

Let a and b be nonzero numbers.
36. $\lim _{\theta \rightarrow 0} \frac{\tan (a \theta)}{\tan (b \theta)}=\lim _{\theta \rightarrow 0} \frac{\left(\frac{\sin (a \theta)}{\cos (b \theta)}\right)}{\left(\frac{\sin (a \theta)}{\cos (b \theta)}\right)}=\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{\cos (a \theta)} \cdot \frac{\cos (b \theta)}{\sin (b \theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{1} \cdot \frac{1}{\sin (b \theta)} \cdot \frac{\cos (b \theta)}{\cos (a \theta)}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{1} \cdot \frac{a \theta}{a \theta} \cdot \frac{1}{\sin (b \theta)} \cdot \frac{b \theta}{b \theta} \cdot \frac{\cos (b \theta)}{\cos (a \theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{a \theta} \cdot \frac{b \theta}{\sin (b \theta)} \cdot \frac{a \theta}{b \theta} \cdot \frac{\cos (b \theta)}{\cos (a \theta)}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{a \theta} \cdot \lim _{\theta \rightarrow 0} \frac{b \theta}{\sin (b \theta)} \cdot \lim _{\theta \rightarrow 0} \frac{a}{b} \cdot \lim _{\theta \rightarrow 0} \frac{\cos (b \theta)}{\cos (a \theta)}=1 \cdot 1 \cdot \frac{a}{b} \cdot \frac{\lim _{\theta \rightarrow 0} \cos (b \theta)}{\lim _{\theta \rightarrow 0} \cos (a \theta)}=\frac{a}{b} \cdot \frac{\cos (0)}{\cos (0)}$
$=\frac{a}{b} \cdot \frac{1}{1}=\frac{a}{b}$.

Alternate Solution:

$\lim _{\theta \rightarrow 0} \frac{\tan (a \theta)}{\tan (b \theta)}=\lim _{\theta \rightarrow 0} \frac{\tan (a \theta)}{1} \cdot \frac{1}{\tan (b \theta)}=\lim _{\theta \rightarrow 0} \frac{\tan (a \theta)}{a \theta} \cdot \frac{b \theta}{\tan (a \theta)} \cdot \frac{a}{b}=$
$=\lim _{\theta \rightarrow 0} \frac{\tan (a \theta)}{a \theta} \cdot \lim _{\theta \rightarrow 0} \frac{b \theta}{\tan (b \theta)} \cdot \lim _{\theta \rightarrow 0} \frac{a}{b} \stackrel{\# 31 \& \# 32}{\cong} 1 \cdot 1 \cdot \frac{a}{b}=\frac{a}{b}$.

Trig-Identity Heavy Group:
37. $\lim _{\theta \rightarrow 0} \frac{\theta}{\cos \left(\frac{\pi}{2}-\theta\right)}=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \stackrel{\not \approx 1}{\stackrel{\leftrightarrow 1}{=}} 1$.

Alternative Solution:

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\theta}{\cos \left(\frac{\pi}{2}-\theta\right)}=\lim _{\theta \rightarrow 0} \frac{\theta}{\cos \left(\frac{\pi}{2}\right) \cos (\theta)+\sin \left(\frac{\pi}{2}\right) \sin (\theta)}=\lim _{\theta \rightarrow 0} \frac{\theta}{(0) \cos (\theta)+(1) \sin (\theta)}= \\
& =\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \stackrel{\# 1}{=1} 1 .
\end{aligned}
$$

38. $\lim _{\theta \rightarrow 0} \frac{\cos \left(\theta+\frac{\pi}{2}\right)}{\theta}=\lim _{\theta \rightarrow 0} \frac{\cos (\theta) \cos \left(\frac{\pi}{2}\right)-\sin (\theta) \sin \left(\frac{\pi}{2}\right)}{\theta}=\lim _{\theta \rightarrow 0} \frac{\cos (\theta)(0)-\sin (\theta)(1)}{\theta}=$
$=\lim _{\theta \rightarrow 0} \frac{-\sin (\theta)}{\theta}=-\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=-1$.
39. $\lim _{\theta \rightarrow 0} \frac{\cos \left(\frac{\pi}{2}-\theta\right)}{\theta}=\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1$.

Alternate solution:

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\cos \left(\frac{\pi}{2}-\theta\right)}{\theta}=\lim _{\theta \rightarrow 0} \frac{\cos \left(\frac{\pi}{2}\right) \cos (\theta)+\sin \left(\frac{\pi}{2}\right) \sin (\theta)}{\theta}=\lim _{\theta \rightarrow 0} \frac{0 \cdot \cos (\theta)+1 \cdot \sin (\theta)}{\theta}= \\
& \lim _{\theta \rightarrow 0} \frac{0 \cdot \cos (\theta)}{\theta}+\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=\lim _{\theta \rightarrow 0} 0+\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=0+1=1 .
\end{aligned}
$$

40. $\lim _{\theta \rightarrow 0} \frac{\theta}{\sin \left(\theta+\frac{\pi}{2}\right)}=\lim _{\theta \rightarrow 0} \frac{\theta}{\cos (\theta)} \stackrel{\# 16}{\approx} 1$.

Alternative Solution:

$\lim _{\theta \rightarrow 0} \frac{\theta}{\sin \left(\theta+\frac{\pi}{2}\right)}=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta) \cos \left(\frac{\pi}{2}\right)+\cos (\theta) \sin \left(\frac{\pi}{2}\right)}=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)(0)+\cos (\theta)(1)}=$
$=\lim _{\theta \rightarrow 0} \frac{\theta}{0+\cos (\theta)}=\lim _{\theta \rightarrow 0} \frac{\theta}{\cos (\theta)} \stackrel{\# 16}{\cong} 1$.

