©he 相prkly Thigar

101 Problems in Calculating Trigonometric Limits with Solutions

(Part 10)
46. $\lim _{\theta \rightarrow 0}[\sin (\pi-\theta)+\tan (\pi-\theta)]=\lim _{\theta \rightarrow 0}[\sin (\theta)+\tan (\theta)]=\sin (0)+\tan (0)=0+0=0$.

Alternate solution:

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0}[\sin (\pi-\theta)+\tan (\pi-\theta)]=\lim _{\theta \rightarrow 0}\left[\sin (\pi) \cos (\theta)-\cos (\pi) \sin (\theta)+\frac{\tan (\pi)+\tan (\theta)}{1-\tan (\pi) \tan (\theta)}\right]= \\
& \lim _{\theta \rightarrow 0}\left[0 \cdot \cos (\theta)-(-1) \sin (\theta)+\frac{0+\tan (\theta)}{1-0 \cdot \tan (\theta)}\right]=\lim _{\theta \rightarrow 0}[\sin (\theta)+\tan (\theta)]= \\
& =\sin (0)+\tan (0)=0+0=0 .
\end{aligned}
$$

Miscellaneous Group:
Let a and b be nonzero numbers.
47. $\lim _{\theta \rightarrow 0} \frac{\tan (a \theta)}{\sin (b \theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{\cos (a \theta)} \cdot \frac{1}{\sin (b \theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{1} \cdot \frac{1}{\cos (a \theta)} \cdot \frac{1}{\sin (b \theta)}=$

$$
\begin{aligned}
& =\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{1} \cdot \frac{a \theta}{a \theta} \frac{1}{\cos (a \theta)} \cdot \frac{1}{\sin (b \theta)} \cdot \frac{b \theta}{b \theta}=\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{a \theta} \cdot \frac{1}{\cos (a \theta)} \cdot \frac{b \theta}{\sin (b \theta)} \cdot \frac{a \theta}{b \theta}= \\
& =\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{a \theta} \cdot \frac{1}{\cos (a \theta)} \cdot \frac{b \theta}{\sin (b \theta)} \cdot \frac{a}{b}=\frac{a}{b} \cdot \lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{a \theta} \cdot \lim _{\theta \rightarrow 0} \frac{1}{\cos (a \theta)} \cdot \lim _{\theta \rightarrow 0} \frac{b \theta}{\sin (b \theta)} \stackrel{\text { \#1 }}{=} \\
& \stackrel{\# 1}{\#} \frac{a}{b} \cdot 1 \cdot \frac{\lim _{\theta \rightarrow 0} 1}{\lim _{\theta \rightarrow 0} \cos (a \theta)} \cdot 1=\frac{a}{b} \cdot 1 \cdot \frac{1}{\cos (0)} \cdot 1=\frac{a}{b} \cdot \frac{1}{1}=\frac{a}{b} .
\end{aligned}
$$

48. $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{1-\cos (\theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{1} \cdot \frac{1}{1-\cos (\theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{1} \cdot \frac{1}{1-\cos (\theta)} \cdot \frac{\theta}{\theta}=$

$$
=\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \cdot \frac{\theta}{1-\cos (\theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \cdot \lim _{\theta \rightarrow 0} \frac{\theta}{1-\cos (\theta)}=1 \cdot \lim _{\theta \rightarrow 0} \frac{\theta}{1-\cos (\theta)}=
$$

$$
=\lim _{\theta \rightarrow 0} \frac{\theta}{1-\cos (\theta)} \cdot \frac{1+\cos (\theta)}{1+\cos (\theta)}=\lim _{\theta \rightarrow 0} \frac{\theta[1+\cos (\theta)]}{1-\cos ^{2} \theta}=\lim _{\theta \rightarrow 0} \frac{\theta[1+\cos (\theta)]}{\sin ^{2} \theta}=
$$

$$
=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \cdot \frac{1+\cos (\theta)}{\sin (\theta)}=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \cdot \lim _{\theta \rightarrow 0} \frac{1+\cos (\theta)}{\sin (\theta)} \stackrel{\# 1}{\cong} 1 \cdot \lim _{\theta \rightarrow 0} \frac{1+\cos (\theta)}{\sin (\theta)}=
$$

$$
=\lim _{\theta \rightarrow 0} \frac{1+\cos (\theta)}{\sin (\theta)}=\text { Does not exist. }
$$

Remark: Note that the numerator is approaching the fixed number 2 while the denominator is approaching 0. Furthermore, $\lim _{\theta \rightarrow 0^{+}} \frac{1+\cos (\theta)}{\sin (\theta)}=+\infty$ while $\lim _{\theta \rightarrow 0^{-}} \frac{1+\cos (\theta)}{\sin (\theta)}=-\infty$.
49. $\lim _{\theta \rightarrow 0} \frac{5 \theta+\sin (3 \theta)}{\tan (4 \theta)-7 \theta \cos (6 \theta)}=\lim _{\theta \rightarrow 0} \frac{5 \theta+\sin (3 \theta)}{\frac{\sin (4 \theta)}{\cos (4 \theta)}-7 \theta \cos (6 \theta)}=$

$$
\begin{aligned}
& =\lim _{\theta \rightarrow 0} \frac{5 \theta+\sin (3 \theta)}{\frac{\sin (4 \theta)}{1} \cdot \frac{1}{\cos (4 \theta)}-7 \theta \cos (6 \theta)}=\lim _{\theta \rightarrow 0} \frac{5 \theta+\sin (3 \theta)}{\frac{5 \theta(4 \theta)}{1} \cdot \frac{1}{\cos (4 \theta)}-7 \theta \cos (6 \theta)} \cdot \frac{\left(\frac{1}{\theta}\right)}{\left(\frac{1}{\theta}\right)}= \\
& =\lim _{\theta \rightarrow 0} \frac{\frac{5 \theta}{\theta}+\frac{\sin (3 \theta)}{\theta}}{\frac{\sin (4 \theta)}{\theta} \cdot \frac{1}{\cos (4 \theta)}-\frac{7 \theta \cos (6 \theta)}{\theta}}=\lim _{\theta \rightarrow 0} \frac{5+\frac{\sin (3 \theta)}{\theta} \cdot \frac{3}{3}}{\frac{5 \sin (4 \theta)}{\theta} \cdot \frac{4}{4} \cdot \frac{1}{\cos (4 \theta)}-\frac{7 \cos (6 \theta)}{1}}= \\
& \left.=\lim _{\theta \rightarrow 0} \frac{5+\frac{\sin (3 \theta)}{\frac{3 \theta}{\sin (4 \theta)}} \frac{4}{4 \theta} \cdot \frac{3}{1} \cdot \frac{1}{\cos (4 \theta)}-\frac{7 \cos (6 \theta)}{1}}{1}=\frac{\lim _{\theta \rightarrow 0}\left(5+\frac{\sin (3 \theta)}{3 \theta} \cdot \frac{3}{1}\right)}{4 \theta} \cdot \frac{4}{1} \cdot \frac{1}{\cos (4 \theta)}-\frac{7 \cos (6 \theta)}{1}\right) \\
& =\frac{\lim _{\theta \rightarrow 0} 5+\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{3}{1}}{\lim _{\theta \rightarrow 0} \frac{\sin (4 \theta)}{4 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{4}{1} \cdot \lim _{\theta \rightarrow 0} \frac{1}{\cos (4 \theta)}-\lim _{\theta \rightarrow 0} \frac{7 \cos (6 \theta)}{1}}= \\
& =\frac{\lim _{\theta \rightarrow 0} 5+\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{3}{1}}{\lim _{\theta \rightarrow 0} \frac{\sin (4 \theta)}{4 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{4}{1} \cdot \frac{\lim _{\theta \rightarrow 0} 1}{\lim _{\theta \rightarrow 0} \cos (4 \theta)}-\frac{7 \cos (6 \theta)}{\lim _{\theta \rightarrow 0} 1}=\frac{1}{1 \cdot 4 \cdot \frac{1}{\cos (0)}-\frac{7 \cos (0)}{1}}=} \\
& =\frac{5+1 \cdot 3}{1 \cdot 4 \cdot 1-7}=\frac{5+3}{4-7}=\frac{8}{-3} .
\end{aligned}
$$

