©hy 㲘pekly Titur

101 Problems in Calculating Trigonometric Limits with Solutions

(Part 11)

$$
\text { 50. } \begin{aligned}
& \begin{array}{l}
\text { "difference of } \\
\text { cubes" factoring } \\
\text { formula }
\end{array} \\
& \lim _{\theta \rightarrow 0} \frac{1-\cos ^{3}(\theta)}{\sin ^{2}(\theta)} \stackrel{\lim _{\theta \rightarrow 0}}{ } \frac{(1-\cos (\theta))\left(1+\cos (\theta)+\cos ^{2}(\theta)\right)}{1-\cos ^{2}(\theta)}= \\
= & \lim _{\theta \rightarrow 0} \frac{(1-\cos (\theta))\left(1+\cos (\theta)+\cos ^{2}(\theta)\right)}{(1+\cos (\theta))(1-\cos (\theta))}=\lim _{\theta \rightarrow 0} \frac{1+\cos (\theta)+\cos ^{2}(\theta)}{1+\cos (\theta)}= \\
= & \frac{\lim _{\theta \rightarrow 0}\left(1+\cos (\theta)+\cos ^{2}(\theta)\right)}{\lim _{\theta \rightarrow 0}(1+\cos (\theta))}=\frac{\lim _{\theta \rightarrow 0} 1+\lim _{\theta \rightarrow 0} \cos (\theta)+\lim _{\theta \rightarrow 0} \cos (\theta) \cdot \lim _{\theta \rightarrow 0} \cos (\theta)}{\lim _{\theta \rightarrow 0} 1+\lim _{\theta \rightarrow 0} \cos (\theta)}= \\
= & \frac{1+\cos (0)+\cos (0) \cdot \cos (0)}{1+\cos (0)}=\frac{1+1+1 \cdot 1}{1+1}=\frac{3}{2} .
\end{aligned}
$$

51. $\lim _{\theta \rightarrow 0} \frac{2+\sin (\theta)}{3+\theta}=\frac{\lim _{\theta \rightarrow 0}[2+\sin (\theta)]}{\lim _{\theta \rightarrow 0}[3+\theta]}=\frac{2+\sin (0)}{3+0}=\frac{2+0}{3+0}=\frac{2}{3}$.
52. $\lim _{\theta \rightarrow 0} \frac{\theta^{2}+1}{\theta+\cos (\theta)}=\frac{\lim _{\theta \rightarrow 0}\left[\theta^{2}+1\right]}{\lim _{\theta \rightarrow 0}[\theta+\cos (\theta)]}=\frac{0^{2}+1}{0+\cos (0)}=\frac{1}{0+1}=1$.
53. $\lim _{\theta \rightarrow 0} \frac{\theta+\tan (\theta)}{\sin (\theta)}=\lim _{\theta \rightarrow 0} \frac{\theta+\frac{\sin (\theta)}{\cos (\theta)}}{\sin (\theta)}=\lim _{\theta \rightarrow 0} \frac{\theta+\frac{\sin (\theta)}{\cos (\theta)}}{\frac{\sin (\theta)}{1}}=\lim _{\theta \rightarrow 0} \frac{1}{\sin (\theta)}\left(\theta+\frac{\sin (\theta)}{\cos (\theta)}\right)=$
$=\lim _{\theta \rightarrow 0}\left(\frac{\theta}{\sin (\theta)}+\frac{1}{\cos (\theta)}\right)=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)}+\lim _{\theta \rightarrow 0} \frac{1}{\cos (\theta)}=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)}+\frac{\lim _{\theta \rightarrow 0} 1}{\lim _{\theta \rightarrow 0} \cos (\theta)} \stackrel{\nexists 1}{=}$
$\stackrel{\# 1}{\stackrel{\# 1}{=}} 1+\frac{1}{\cos (0)}=1+\frac{1}{1}=1+1=2$.
54. $\lim _{\theta \rightarrow 0} \frac{1-\cos (3 \theta)}{\theta \sin (\theta)}=\lim _{\theta \rightarrow 0} \frac{1-\cos (3 \theta)}{\theta \sin (\theta)} \cdot \frac{1+\cos (3 \theta)}{1+\cos (3 \theta)}=\lim _{\theta \rightarrow 0} \frac{1-\cos ^{2}(3 \theta)}{\theta \sin (\theta)(1+\cos (3 \theta))}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(3 \theta)}{\theta \sin (\theta)(1+\cos (3 \theta))}=\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{\theta} \cdot \frac{\sin (3 \theta)}{1} \cdot \frac{1}{\sin (\theta)} \cdot \frac{1}{1+\cos (3 \theta)}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{\theta} \cdot \frac{3}{3} \cdot \frac{\sin (3 \theta)}{1} \cdot \frac{3 \theta}{3 \theta} \cdot \frac{1}{\sin (\theta)} \cdot \frac{1}{1+\cos (3 \theta)}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \frac{\sin (3 \theta)}{3 \theta} \cdot \frac{\theta}{\sin (\theta)} \cdot \frac{9}{1+\cos (3 \theta)}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \cdot \lim _{\theta \rightarrow 0} \frac{9}{1+\cos (3 \theta)}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \cdot \frac{\lim _{\theta \rightarrow 0} 9}{\lim _{\theta \rightarrow 0}(1+\cos (3 \theta))} \stackrel{\# 1}{\cong} 1 \cdot 1 \cdot 1 \cdot \frac{9}{1+\cos (0)}=$
$=\frac{9}{1+1}=\frac{9}{2}$.
