©hy 㲘prkly Tignt

101 Problems in Calculating Trigonometric Limits with Solutions

(Part 12)
55. $\lim _{\theta \rightarrow 0} \frac{1-\cos (2 \theta)}{\theta \sin (\theta)}=\lim _{\theta \rightarrow 0} \frac{1-\cos (2 \theta)}{\theta \sin (\theta)} \cdot \frac{1+\cos (2 \theta)}{1+\cos (2 \theta)}=\lim _{\theta \rightarrow 0} \frac{1-\cos ^{2}(2 \theta)}{\theta \sin (\theta)(1+\cos (2 \theta))}=$ $=\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(2 \theta)}{\theta \sin (\theta)(1+\cos (2 \theta))}=\lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{\theta} \cdot \frac{\sin (2 \theta)}{1} \cdot \frac{1}{\sin (\theta)(1+\cos (2 \theta))}=$ $=\lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{\theta} \cdot \frac{2}{2} \cdot \frac{\sin (2 \theta)}{1} \cdot \frac{2 \theta}{2 \theta} \cdot \frac{1}{\sin (\theta)(1+\cos (2 \theta))}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{2 \theta} \cdot \frac{\sin (2 \theta)}{2 \theta} \cdot \frac{\theta}{\sin (\theta)} \cdot \frac{4}{1+\cos (2 \theta)}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{2 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{2 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \cdot \lim _{\theta \rightarrow 0} \frac{4}{1+\cos (2 \theta)}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{2 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{2 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \cdot \frac{\lim _{\theta \rightarrow 0} 4}{\lim _{\theta \rightarrow 0}[1+\cos (2 \theta)]} \stackrel{\# 1}{\cong} 1 \cdot 1 \cdot 1 \cdot \frac{4}{1+\cos (0)}=$ $=\frac{4}{1+1}=\frac{4}{2}=2$.

Alternate solution:

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{1-\cos (2 \theta)}{\theta \sin (\theta)}=\lim _{\theta \rightarrow 0} \frac{1-\cos (2 \theta)}{\theta \sin (\theta)} \cdot \frac{1+\cos (2 \theta)}{1+\cos (2 \theta)}=\lim _{\theta \rightarrow 0} \frac{1-\cos ^{2}(2 \theta)}{\theta \sin (\theta)(1+\cos (2 \theta))}= \\
& =\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(2 \theta)}{\theta \sin (\theta)(1+\cos (2 \theta))}=\lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{\theta} \cdot \frac{\sin (2 \theta)}{1} \cdot \frac{1}{\sin (\theta)(1+\cos (2 \theta))}= \\
& =\lim _{\theta \rightarrow 0} \frac{2 \sin (\theta) \cos (\theta)}{\theta} \cdot \frac{2 \sin (\theta) \cos (\theta)}{1} \cdot \frac{1}{\sin (\theta)(1+\cos (2 \theta))}= \\
& =4 \lim _{\theta \rightarrow 0} \frac{\sin (\theta) \cos (\theta)}{\theta} \cdot \frac{\cos (\theta)}{1} \cdot \frac{1}{(1+\cos (2 \theta))}=4 \lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \cdot \frac{\cos ^{2}(\theta)}{1+\cos (2 \theta)}= \\
& =4 \lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \cdot \lim _{\theta \rightarrow 0} \frac{\cos ^{2}(\theta)}{1+\cos (2 \theta)}=4 \lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \cdot \frac{\lim _{\theta \rightarrow 0} \cos ^{2}(\theta)}{\lim _{\theta \rightarrow 0}[1+\cos (2 \theta)]}=4 \cdot 1 \cdot \frac{\cos ^{2}(0)}{1+\cos (0)}= \\
& =\frac{4(1)}{1+1}=\frac{4}{2}=2 .
\end{aligned}
$$

56. $\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta \sin (\theta)}=\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\theta \sin (\theta)} \cdot \frac{1+\cos (\theta)}{1+\cos (\theta)}=\lim _{\theta \rightarrow 0} \frac{1-\cos ^{2}(\theta)}{\theta \sin (\theta)(1+\cos (\theta))}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(\theta)}{\theta \sin (\theta)(1+\cos (\theta))}=\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta(1+\cos (\theta))}=\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \cdot \frac{1}{1+\cos (\theta)}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \cdot \lim _{\theta \rightarrow 0} \frac{1}{1+\cos (\theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta} \cdot \frac{\lim _{\theta \rightarrow 0} 1}{\lim _{\theta \rightarrow 0}[1+\cos (\theta)]}=1 \cdot \frac{1}{1+\cos (0)}=\frac{1}{1+1}=\frac{1}{2}$.
57. $\lim _{\theta \rightarrow 0} \frac{\cos (\theta)}{\theta \csc (\theta)}=\lim _{\theta \rightarrow 0} \frac{\cos (\theta)}{1} \cdot \frac{\sin (\theta)}{\theta}=\lim _{\theta \rightarrow 0} \cos (\theta) \cdot \lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=\cos (0) \cdot 1=1 \cdot 1=1$.
58. $\lim _{\theta \rightarrow 0} \sin (2 \theta) \cot (\theta)=\lim _{\theta \rightarrow 0} \sin (2 \theta) \cdot \frac{\cos (\theta)}{\sin (\theta)}=\lim _{\theta \rightarrow 0} 2 \sin (\theta) \cos (\theta) \cdot \frac{\cos (\theta)}{\sin (\theta)}=$
$=\lim _{\theta \rightarrow 0} 2 \cos (\theta) \cos (\theta)=2 \cos (0) \cos (0)=2 \cdot 1 \cdot 1=2$.

Alternate solution:

$\lim _{\theta \rightarrow 0} \sin (2 \theta) \cot (\theta)=\lim _{\theta \rightarrow 0} \sin (2 \theta) \cdot \frac{\cos (\theta)}{\sin (\theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{1} \cdot \frac{\cos (\theta)}{1} \cdot \frac{1}{\sin (\theta)}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{1} \cdot \frac{2 \theta}{2 \theta} \cdot \frac{\cos (\theta)}{1} \cdot \frac{1}{\sin (\theta)}=\lim _{\theta \rightarrow 0} \frac{2}{1} \cdot \frac{\sin (2 \theta)}{2 \theta} \cdot \frac{\cos (\theta)}{1} \cdot \frac{\theta}{\sin (\theta)}=$
$=\lim _{\theta \rightarrow 0} \frac{2}{1} \cdot \lim _{\theta \rightarrow 0} \frac{\sin (2 \theta)}{2 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{\cos (\theta)}{1} \cdot \lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \stackrel{\# 1}{\cong} 2 \cdot 1 \cdot \cos (0) \cdot 1=2 \cdot 1 \cdot 1 \cdot 1=2$.
59. $\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\sin (\theta)}=\lim _{\theta \rightarrow 0} \frac{1-\cos (\theta)}{\sin (\theta)} \cdot \frac{1+\cos (\theta)}{1+\cos (\theta)}=\lim _{\theta \rightarrow 0} \frac{1-\cos ^{2}(\theta)}{\sin (\theta)(1+\cos (\theta))}=$
$=\lim _{\theta \rightarrow 0} \frac{\sin ^{2}(\theta)}{\sin (\theta)(1+\cos (\theta))}=\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{1+\cos (\theta)}=\frac{\lim _{\theta \rightarrow 0} \sin (\theta)}{\lim _{\theta \rightarrow 0}(1+\cos (\theta))}=\frac{\lim _{\theta \rightarrow 0} \sin (\theta)}{\lim _{\theta \rightarrow 0} 1+\lim _{\theta \rightarrow 0} \cos (\theta)}=$
$=\frac{0}{1+\cos (0)}=\frac{0}{1+1}=\frac{0}{2}=0$.

