©hy 㲘prkly Titur

101 Problems in Calculating Trigonometric Limits with Solutions

(Part 14)
68. $\lim _{\theta \rightarrow 0} \frac{\sin [\cos (\theta)]}{\sec (\theta)}=\frac{\lim _{\theta \rightarrow 0} \sin [\cos (\theta)]}{\lim _{\theta \rightarrow 0} \sec (\theta)}=\frac{\sin \left(\lim _{\theta \rightarrow 0} \cos (\theta)\right)}{1}=\frac{\sin (\cos (0))}{1}=\sin (1)$.
69. $\lim _{\theta \rightarrow 0} \frac{\theta^{2}}{1-\cos ^{2}(2 \theta)}=\lim _{\theta \rightarrow 0} \frac{\theta^{2}}{\sin ^{2}(2 \theta)}=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (2 \theta)} \cdot \frac{\theta}{\sin (2 \theta)}=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (2 \theta)} \cdot \frac{2}{2} \cdot \frac{\theta}{\sin (2 \theta)} \cdot \frac{2}{2}=$
$=\lim _{\theta \rightarrow 0} \frac{2 \theta}{\sin (2 \theta)} \cdot \frac{2 \theta}{\sin (2 \theta)} \cdot \frac{1}{4}=\frac{1}{4}\left(\lim _{\theta \rightarrow 0} \frac{2 \theta}{\sin (2 \theta)} \cdot \lim _{\theta \rightarrow 0} \frac{2 \theta}{\sin (2 \theta)}\right) \stackrel{\# 1}{\cong}=\frac{1}{4}(1 \cdot 1)=\frac{1}{4}$.
Alternate solution:

$$
\begin{aligned}
& \lim _{\theta \rightarrow 0} \frac{\theta^{2}}{1-\cos ^{2}(2 \theta)}=\lim _{\theta \rightarrow 0} \frac{\theta^{2}}{\sin ^{2}(2 \theta)}=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (2 \theta)} \cdot \frac{\theta}{\sin (2 \theta)}= \\
& =\lim _{\theta \rightarrow 0} \frac{\theta}{2 \sin (\theta) \cos (\theta)} \cdot \frac{\theta}{2 \sin (\theta) \cos (\theta)}=\lim _{\theta \rightarrow 0} \frac{1}{4} \cdot \frac{\theta}{\sin (\theta)} \cdot \frac{\theta}{\sin (\theta)} \cdot \frac{1}{\cos (\theta)} \cdot \frac{1}{\cos (\theta)}= \\
& =\frac{1}{4} \lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \cdot \lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)} \cdot \lim _{\theta \rightarrow 0} \frac{1}{\cos (\theta)} \cdot \lim _{\theta \rightarrow 0} \frac{1}{\cos (\theta)} \stackrel{\# 1}{=} \frac{1}{4} \cdot 1 \cdot 1 \cdot \frac{\lim _{\theta \rightarrow 0} 1}{\lim _{\theta \rightarrow 0} \cos (\theta)} \cdot \frac{\lim _{\theta \rightarrow 0} 1}{\lim _{\theta \rightarrow 0} \cos (\theta)}= \\
& =\frac{1}{4} \cdot \frac{1}{\cos (0)} \cdot \frac{1}{\cos (0)}=\frac{1}{4} \cdot \frac{1}{1} \cdot \frac{1}{1}=\frac{1}{4} .
\end{aligned}
$$

70. $\lim _{\theta \rightarrow 0} \frac{\sec (6 \theta) \tan (3 \theta)}{\theta}=\lim _{\theta \rightarrow 0} \frac{\tan (3 \theta)}{\theta \cos (6 \theta)}=\lim _{\theta \rightarrow 0} \frac{1}{\cos (6 \theta)} \cdot \frac{\sin (3 \theta)}{\theta \cos (3 \theta)}=$
$=\lim _{\theta \rightarrow 0} \frac{1}{\cos (6 \theta)} \cdot \frac{\sin (3 \theta)}{\theta} \cdot \frac{1}{\cos (3 \theta)}=\lim _{\theta \rightarrow 0} \frac{1}{\cos (6 \theta)} \cdot \frac{\sin (3 \theta)}{\theta} \cdot \frac{3}{3} \cdot \frac{1}{\cos (3 \theta)}=$
$=3 \lim _{\theta \rightarrow 0} \frac{1}{\cos (6 \theta)} \cdot \frac{\sin (3 \theta)}{3 \theta} \cdot \frac{1}{\cos (3 \theta)}=3 \lim _{\theta \rightarrow 0} \frac{1}{\cos (6 \theta)} \cdot \lim _{\theta \rightarrow 0} \frac{\sin (3 \theta)}{3 \theta} \cdot \lim _{\theta \rightarrow 0} \frac{1}{\cos (3 \theta)}=$
$=3 \cdot \frac{1}{\cos (0)} \cdot 1 \cdot \frac{1}{\cos (0)}=3 \cdot 1 \cdot 1 \cdot 1=3$.
71. $\lim _{\theta \rightarrow 0} \theta^{2} \cot ^{2}(4 \theta)=\lim _{\theta \rightarrow 0} \theta^{2} \cdot \frac{\cos ^{2}(4 \theta)}{\sin ^{2}(4 \theta)}=\lim _{\theta \rightarrow 0} \frac{\theta^{2}}{\sin ^{2}(4 \theta)} \cdot \cos ^{2}(4 \theta)=$

$$
\begin{aligned}
& =\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (4 \theta)} \cdot \frac{\theta}{\sin (4 \theta)} \cdot \cos (4 \theta) \cdot \cos (4 \theta)= \\
& =\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (4 \theta)} \cdot \frac{4}{4} \cdot \frac{\theta}{\sin (4 \theta)} \cdot \frac{4}{4} \cdot \cos (4 \theta) \cdot \cos (4 \theta)= \\
& =\frac{1}{16} \lim _{\theta \rightarrow 0} \frac{4 \theta}{\sin (4 \theta)} \cdot \frac{4 \theta}{\sin (4 \theta)} \cdot \cos (4 \theta) \cdot \cos (4 \theta)= \\
& =\frac{1}{16} \lim _{\theta \rightarrow 0} \frac{4 \theta}{\sin (4 \theta)} \cdot \lim _{\theta \rightarrow 0} \frac{4 \theta}{\sin (4 \theta)} \cdot \lim _{\theta \rightarrow 0} \cos (4 \theta) \cdot \lim _{\theta \rightarrow 0} \cos (4 \theta) \stackrel{\# 1}{=} \frac{1}{16} \cdot 1 \cdot 1 \cdot \cos (0) \cdot \cos (0)= \\
& =\frac{1}{16} \cdot 1 \cdot 1 \cdot 1 \cdot 1=\frac{1}{16} .
\end{aligned}
$$

72. $\lim _{\theta \rightarrow 0} \frac{\tan (\pi-\theta)-\theta}{\sin (\theta+\pi)}=\lim _{\theta \rightarrow 0} \frac{\frac{\sin (\pi-\theta)}{\cos (\pi-\theta)}-\theta}{\sin (\theta+\pi)}=\lim _{\theta \rightarrow 0} \frac{\left[\frac{\sin (\pi) \cos (\theta)-\cos (\pi) \sin (\theta)}{\cos (\pi) \cos (\theta)+\sin (\pi) \sin (\theta)}\right]-\theta}{\sin (\theta) \cos (\pi)+\cos (\theta) \sin (\pi)}=$ $=\lim _{\theta \rightarrow 0} \frac{\left[\frac{0 \cdot \cos (\theta)-(-1) \cdot \sin (\theta)}{(-1) \cdot \cos (\theta)+0 \cdot \sin (\theta)}\right]-\theta}{\sin (\theta) \cdot(-1)+\cos (\theta) \cdot 0}=\lim _{\theta \rightarrow 0} \frac{\left[\frac{\sin (\theta)}{-\cos (\theta)}\right]-\theta}{-\sin (\theta)}=\lim _{\theta \rightarrow 0} \frac{\theta+\frac{\sin (\theta)}{\cos (\theta)}}{\frac{\sin (\theta)}{1}}=$ $=\lim _{\theta \rightarrow 0}\left[\frac{\theta}{\sin (\theta)}+\frac{1}{\cos (\theta)}\right]=\lim _{\theta \rightarrow 0} \frac{\theta}{\sin (\theta)}+\lim _{\theta \rightarrow 0} \frac{1}{\cos (\theta)} \stackrel{\# 1}{=} 1+\frac{1}{\cos (0)}=1+\frac{1}{1}=1+1=2$.

Let a and b be nonzero numbers.
73. $\lim _{\theta \rightarrow 0} \frac{\cos (a \theta) \tan (a \theta)}{b \theta}=\lim _{\theta \rightarrow 0} \frac{\cos (a \theta)}{b \theta} \cdot \frac{\sin (a \theta)}{\cos (a \theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{b \theta}=\frac{1}{b} \lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{\theta} \cdot \frac{a}{a}=$

$$
=\frac{a}{b} \lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{a \theta}=\frac{a}{b} \cdot 1=\frac{a}{b} .
$$

Let a and b be nonzero numbers.
74. $\lim _{\theta \rightarrow 0} \frac{\cos (a \theta) \tan (a \theta)}{\cos (b \theta) \tan (b \theta)}=\lim _{\theta \rightarrow 0} \frac{\cos (a \theta) \cdot\left[\frac{\sin (a \theta)}{\cos (a \theta)}\right]}{\cos (b \theta) \cdot\left[\frac{\sin (b \theta)}{\cos (b \theta)}\right]}=\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{\sin (b \theta)}=\lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{\sin (b \theta)} \cdot \frac{a b \theta}{a b \theta}=$

$$
=\frac{a}{b} \lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{a \theta} \cdot \frac{b \theta}{\sin (b \theta)}=\frac{a}{b} \lim _{\theta \rightarrow 0} \frac{\sin (a \theta)}{a \theta} \cdot \lim _{\theta \rightarrow 0} \frac{b \theta}{\sin (b \theta)} \stackrel{\# 1}{\leftrightarrows} \frac{a}{b} \cdot 1 \cdot 1=\frac{a}{b} .
$$

