

51 Problems in Calculating Integrals Using \boldsymbol{U}-Substitution with Solutions

(Part 6)
13. $\int e^{x+3} d x=\int e^{u} d u=e^{u}+C=e^{x+3}+C$.

Check: $\left[e^{x+3}+C\right]^{\prime}=e^{x+3} \cdot \checkmark$

Type 2
14.
$\int e^{31+x} d x=\int e^{u} d u=e^{u}+C=e^{31+x}+C$.

$$
\left\{\begin{aligned}
\text { Let } u & =31+x \\
d u & =d x
\end{aligned}\right.
$$

Check: $\left[e^{31+x}+C\right]^{\prime}=e^{31+x} . \checkmark$
15.

$$
\begin{aligned}
& \int(3 x+1)^{4} d x=\int u^{4} \frac{d u}{3}=\frac{1}{3} \int u^{4} d u=\frac{1}{3} \cdot \frac{1}{5} u^{5}+C=\frac{1}{15} u^{5}+C=\left\{\begin{aligned}
\text { Let } u & =3 x+1 \\
d u & =3 d x \\
\frac{d u}{3} & =d x
\end{aligned}\right. \\
& =\frac{1}{15}(3 x+1)^{5}+C .
\end{aligned}
$$

Check: $\left[\frac{1}{15}(3 x+1)^{5}+C\right]^{\prime}=\frac{5}{15}(3 x+1)^{4}(3)=(3 x+1)^{4} . \checkmark$
Remark: Some books and teachers would do the u-assignment step differently as follows:

$$
\text { Let } \begin{aligned}
u & =3 x+1 \\
d u & =3 d x
\end{aligned}
$$

and then modify the original integral:

$$
\int(3 x+1)^{4} d x=\frac{1}{3} \int(3 x+1)^{4} 3 d x
$$

which will result in the following u-substitution:

$$
\frac{1}{3} \int u^{4} d u .
$$

In over twenty years of tutoring calculus, every student with whom I discussed this alternative way of doing the problem hates it. I agree. I think the u-assignment technique employed in this book makes the u substitution step as "obvious" and "mechanical" as can be.
16.

$$
\begin{aligned}
& \int\left(\frac{1}{2} x-50\right)^{6} d x=\int u^{6} 2 d u=2 \int u^{6} d u=2 \cdot \frac{1}{7} u^{7}+C=\frac{2}{7} u^{7}+C=\left\{\begin{aligned}
\text { Let } u & =\frac{1}{2} x-50 \\
d u & =\frac{1}{2} d x \\
2 d u & =d x
\end{aligned}\right. \\
& =\frac{2}{-}\left({ }^{1} x-50\right)^{7}+C
\end{aligned}
$$

$$
=\frac{2}{7}\left(\frac{1}{2} x-50\right)^{7}+C
$$

Check: $\left[\frac{2}{7}\left(\frac{1}{2} x-50\right)^{7}+C\right]^{\prime}=\frac{14}{7}\left(\frac{1}{2} x-50\right)^{6}\left(\frac{1}{2}\right)=\left(\frac{1}{2} x-50\right)^{6}$.
17.

$$
\begin{array}{ll}
\int \sqrt{3 x+1} d x=\int(3 x+1)^{\frac{1}{2}} d x=\int u^{\frac{1}{2}} \frac{d u}{3}=\frac{1}{3} \int u^{\frac{1}{2}} d u=\frac{1}{3} \frac{u^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}+C=\left\{\begin{aligned}
\text { Let } u & =3 x+1 \\
d u & =3 d x
\end{aligned}\right. \\
=\frac{1}{3} \cdot \frac{2}{3} u^{\frac{3}{2}}+C=\frac{2}{9} u^{\frac{3}{2}}+C=\frac{2}{9}(3 x+1)^{\frac{3}{2}}+C=\frac{2}{9} \sqrt{(3 x+1)^{3}}+C . & \frac{d u}{3}=d x
\end{array}
$$

$$
\text { Check: }\left[\frac{2}{9} \sqrt{(3 x+1)^{3}}+C\right]^{\prime}=\left[\frac{2}{9}(3 x+1)^{\frac{3}{2}}+C\right]^{\prime}=\frac{2}{9} \cdot \frac{3}{2}(3 x+1)^{\frac{1}{2}}(3)=
$$

$$
=(3 x+1)^{\frac{1}{2}}=\sqrt{3 x+1}
$$

18.

$$
\begin{aligned}
& \int \sqrt[6]{\frac{1}{2} x-50} d x=\int\left(\frac{1}{2} x-50\right)^{\frac{1}{6}} d x=\int u^{\frac{1}{6}} 2 d u=2 \int u^{\frac{1}{6}} d u=2 \frac{u^{\frac{7}{6}}}{\left(\frac{7}{6}\right)}+C=\left\{\begin{aligned}
\text { Let } u & =\frac{1}{2} x-50 \\
d u & =\frac{1}{2} d x \\
2 d u & =d x
\end{aligned}\right. \\
& =2 \cdot \frac{6}{7} u^{\frac{7}{6}}+C=\frac{12}{7} u^{\frac{7}{6}}+C=\frac{12}{7}\left(\frac{1}{2} x-50\right)^{\frac{7}{6}}+C=\frac{12}{7} \sqrt[6]{\left(\frac{1}{2} x-50\right)^{7}}+C .
\end{aligned}
$$

Check: $\left[\frac{12}{7} \sqrt[6]{\left(\frac{1}{2} x-50\right)^{7}}+C\right]^{\prime}=\left[\frac{12}{7}\left(\frac{1}{2} x-50\right)^{\frac{7}{6}}+C\right]^{\prime}=$
$=\frac{12}{7} \cdot \frac{7}{6}\left(\frac{1}{2} x-50\right)^{\frac{1}{6}}=2\left(\frac{1}{2} x-50\right)^{\frac{1}{6}}\left(\frac{1}{2}\right)=\left(\frac{1}{2} x-50\right)^{\frac{1}{6}}=\sqrt[6]{\frac{1}{2} x-50}$.
19.
$\int \frac{1}{(3 x+2)^{3}} d x=\int(3 x+2)^{-3} d x=\int u^{-3} \frac{d u}{3}=\frac{1}{3} \int u^{-3} d u=\quad\left\{\begin{aligned} \text { Let } u & =3 x+2 \\ d u & =3 d x\end{aligned}\right.$ $=\frac{1}{3} \cdot \frac{-1}{2} u^{-2}+C=\frac{-1}{6} u^{-2}+C=\frac{-1}{6}(3 x+2)^{-2}+C=\frac{-1}{6(3 x+2)^{2}}+C . \quad \frac{d u}{3}=d x$ Check: $\left[\frac{-1}{6(3 x+2)^{2}}+C\right]^{\prime}=\left[\frac{-1}{6}(3 x+2)^{-2}+C\right]^{\prime}=\frac{2}{6}(3 x+2)^{3}(3)=$ $=\frac{1}{3}(3 x+2)^{-3}(3)=(3 x+2)^{-3}=\frac{1}{(3 x+2)^{3}}$.

