The Weekly Rigor

No. 68

"A mathematician is a machine for turning coffee into theorems."

October 10, 2015

The Norman Window Problem

(Part 2)

Claim: For a Norman window with the shape of a rectangle surmounted by a semicircle of radius *r* and having perimeter *P*, the maximum area *A* of the window is found at $r_{max} = \frac{P}{\pi + 4}$ with value $A_{max} = \frac{P}{2} \cdot r_{max}$.

PROOF FROM PRECALCULUS

Proof: Let y denote the height of the rectangle. Hence, $P = 2y + 2r + \pi r$. So, $y = \frac{P-2r-\pi r}{2}$. Furthermore, $A = 2ry + \frac{1}{2}\pi r^2$. Thus, by substitution, A(r) = $= 2r\left(\frac{P-2r-\pi r}{2}\right) + \frac{1}{2}\pi r^2 = Pr - 2r^2 - \pi r^2 + \frac{1}{2}\pi r^2 = Pr - 2r^2 - \frac{1}{2}\pi r^2 =$ $= -(\frac{1}{2}\pi + 2)r^2 + Pr = -\frac{(\pi+4)}{2}r^2 + Pr$. Therefore, by the vertex formula $r_{max} = \frac{P}{\pi+4}$ and also $A_{max} = A(r_{max}) = A\left(\frac{P}{\pi+4}\right) = -\frac{(\pi+4)}{2}\left(\frac{P}{\pi+4}\right)^2 + P\left(\frac{P}{\pi+4}\right) = -\frac{1}{2}\frac{P^2}{(\pi+4)} + \frac{P^2}{\pi+4} = \frac{1}{2}\frac{P^2}{(\pi+4)} =$ $= \frac{P}{2} \cdot \frac{P}{\pi+4} = \frac{P}{2} \cdot r_{max}$, by substitution.

PROOF FROM SINGLE-VARIABLE CALCULUS

Proof: Let *y* denote the height of the rectangle. Hence, $P = 2y + 2r + \pi r$. So, $y = \frac{P-2r-\pi r}{2}$. Furthermore, $A = 2ry + \frac{1}{2}\pi r^2$. Thus, by substitution, $A(r) = 2r\left(\frac{P-2r-\pi r}{2}\right) + \frac{1}{2}\pi r^2 = Pr - 2r^2 - \pi r^2 + \frac{1}{2}\pi r^2 = Pr - 2r^2 - \frac{1}{2}\pi r^2 = 2r - (\frac{1}{2}\pi + 2)r^2 + Pr = -\frac{(\pi+4)}{2}r^2 + Pr$. Hence, $A'(r) = -(\pi+4)r + P$. But A'(r) = 0 when $-(\pi+4)r + P = 0$, i.e., when $r = \frac{P}{\pi+4}$. Therefore, $r_{max} = \frac{P}{\pi+4}$ and also $A_{max} = A(r_{max}) = A\left(\frac{P}{\pi+4}\right) = -\frac{(\pi+4)}{2}\left(\frac{P}{\pi+4}\right)^2 + P\left(\frac{P}{\pi+4}\right) = -\frac{1}{2}\frac{P^2}{(\pi+4)} + \frac{P^2}{\pi+4} = \frac{1}{2}\frac{P^2}{(\pi+4)} = \frac{P}{2} \cdot \frac{P}{\pi+4} = \frac{P}{2} \cdot r_{max}$, by substitution.

PROOF FROM MULTI-VARIABLE CALCULUS

Proof: Let *y* denote the height of the rectangle. Hence, $P = 2y + 2r + \pi r$. Furthermore, $A = 2ry + \frac{1}{2}\pi r^2$. So,

$$\begin{array}{ll} A_r = 2y + \pi r & P_r = 2 + \pi \\ A_y = 2r & P_y = 2 \end{array}$$

Thus,

$$2y + \pi r = \lambda(2 + \pi)$$
$$2r = 2\lambda$$

 $P = 2y + 2r + \pi r$ Hence, $\lambda = \frac{2y + \pi r}{\pi + 2}$ and $\lambda = r$. So, $\frac{2y + \pi r}{\pi + 2} = r \implies 2y + \pi r = r(\pi + 2) \implies$ $\implies 2y + \pi r = r\pi + 2r \implies y = r$. Consequently, $P = 2r + 2r + \pi r = r(\pi + 4)$, by substitution. Therefore, $r_{max} = \frac{P}{\pi + 4}$ and also $A_{max} = A(r_{max}) = A\left(\frac{P}{\pi + 4}\right) =$ $= -\frac{(\pi + 4)}{2}\left(\frac{P}{\pi + 4}\right)^2 + P\left(\frac{P}{\pi + 4}\right) = -\frac{1}{2}\frac{P^2}{(\pi + 4)} + \frac{P^2}{\pi + 4} = \frac{1}{2}\frac{P^2}{(\pi + 4)} = \frac{P}{2} \cdot \frac{P}{\pi + 4} = \frac{P}{2} \cdot r_{max}$, by substitution.

"Only he who never plays, never loses."