# The 䀦rekly Tingar 

## The Norman Window Problem

(Part 2)
Claim: For a Norman window with the shape of a rectangle surmounted by a semicircle of radius $r$ and having perimeter $P$, the maximum area $A$ of the window is found at $r_{\max }=\frac{P}{\pi+4}$ with value $A_{\max }=\frac{P}{2} \cdot r_{\max }$.

## PROOF FROM PRECALCULUS

Proof: Let $y$ denote the height of the rectangle. Hence, $P=2 y+2 r+\pi r$. So, $y=\frac{P-2 r-\pi r}{2}$. Furthermore, $A=2 r y+\frac{1}{2} \pi r^{2}$. Thus, by substitution, $A(r)=$ $=2 r\left(\frac{P-2 r-\pi r}{2}\right)+\frac{1}{2} \pi r^{2}=P r-2 r^{2}-\pi r^{2}+\frac{1}{2} \pi r^{2}=P r-2 r^{2}-\frac{1}{2} \pi r^{2}=$ $=-\left(\frac{1}{2} \pi+2\right) r^{2}+\operatorname{Pr}=-\frac{(\pi+4)}{2} r^{2}+\operatorname{Pr}$. Therefore, by the vertex formula $r_{\max }=\frac{P}{\pi+4}$ and also $A_{\max }=A\left(r_{\max }\right)=A\left(\frac{P}{\pi+4}\right)=-\frac{(\pi+4)}{2}\left(\frac{P}{\pi+4}\right)^{2}+P\left(\frac{P}{\pi+4}\right)=-\frac{1}{2} \frac{P^{2}}{(\pi+4)}+\frac{P^{2}}{\pi+4}=\frac{1}{2} \frac{P^{2}}{(\pi+4)}=$ $=\frac{P}{2} \cdot \frac{P}{\pi+4}=\frac{P}{2} \cdot r_{\max }$, by substitution.

## PROOF FROM SINGLE-VARIABLE CALCULUS

Proof: Let $y$ denote the height of the rectangle. Hence, $P=2 y+2 r+\pi r$. So, $y=\frac{P-2 r-\pi r}{2}$. Furthermore, $A=2 r y+\frac{1}{2} \pi r^{2}$. Thus, by substitution, $A(r)=$ $=2 r\left(\frac{P-2 r-\pi r}{2}\right)+\frac{1}{2} \pi r^{2}=P r-2 r^{2}-\pi r^{2}+\frac{1}{2} \pi r^{2}=P r-2 r^{2}-\frac{1}{2} \pi r^{2}=$ $=-\left(\frac{1}{2} \pi+2\right) r^{2}+\operatorname{Pr}=-\frac{(\pi+4)}{2} r^{2}+\operatorname{Pr}$. Hence, $A^{\prime}(r)=-(\pi+4) r+P$. But $A^{\prime}(r)=0$ when $-(\pi+4) r+P=0$, i.e., when $r=\frac{P}{\pi+4}$. Therefore, $r_{\max }=\frac{P}{\pi+4}$ and also $A_{\max }=A\left(r_{\max }\right)=$ $=A\left(\frac{P}{\pi+4}\right)=-\frac{(\pi+4)}{2}\left(\frac{P}{\pi+4}\right)^{2}+P\left(\frac{P}{\pi+4}\right)=-\frac{1}{2} \frac{P^{2}}{(\pi+4)}+\frac{P^{2}}{\pi+4}=\frac{1}{2} \frac{P^{2}}{(\pi+4)}=\frac{P}{2} \cdot \frac{P}{\pi+4}=\frac{P}{2} \cdot r_{\max }$, by substitution.

## PROOF FROM MULTI-VARIABLE CALCULUS

Proof: Let $y$ denote the height of the rectangle. Hence, $P=2 y+2 r+\pi r$. Furthermore, $A=2 r y+\frac{1}{2} \pi r^{2}$. So,

$$
\begin{array}{ll}
A_{r}=2 y+\pi r & P_{r}=2+\pi \\
A_{y}=2 r & P_{y}=2
\end{array}
$$

Thus,

$$
\begin{gathered}
2 y+\pi r=\lambda(2+\pi) \\
2 r=2 \lambda \\
P=2 y+2 r+\pi r
\end{gathered}
$$

Hence, $\lambda=\frac{2 y+\pi r}{\pi+2}$ and $\lambda=r$. So, $\frac{2 y+\pi r}{\pi+2}=r \Rightarrow 2 y+\pi r=r(\pi+2) \Rightarrow$
$\Rightarrow 2 y+\pi r=r \pi+2 r \Rightarrow y=r$. Consequently, $P=2 r+2 r+\pi r=r(\pi+4)$, by substitution. Therefore, $r_{\max }=\frac{P}{\pi+4}$ and also $A_{\max }=A\left(r_{\max }\right)=A\left(\frac{P}{\pi+4}\right)=$ $=-\frac{(\pi+4)}{2}\left(\frac{P}{\pi+4}\right)^{2}+P\left(\frac{P}{\pi+4}\right)=-\frac{1}{2} \frac{P^{2}}{(\pi+4)}+\frac{P^{2}}{\pi+4}=\frac{1}{2} \frac{P^{2}}{(\pi+4)}=\frac{P}{2} \cdot \frac{P}{\pi+4}=\frac{P}{2} \cdot r_{\max }$, by substitution.

