©he 相rexly Tingar

The Two-Sided Limit Test for Single-Variable Calculus

Definition 1: Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then we say that the limit of $f(x)$ as x approaches a is L , and we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \text {, then }|f(x)-L|<\varepsilon
$$

Definition 2:

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

if for every number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that

$$
\text { if } 0<x-a<\delta \text {, then }|f(x)-L|<\varepsilon .
$$

Definition 3:

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

if for every number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that if $0<a-x<\delta$, then $|f(x)-L|<\varepsilon$.

Theorem 1: If $\lim _{x \rightarrow a} f(x)=L$ then $\lim _{x \rightarrow a^{+}} f(x)=L$.
Proof: Suppose that $\lim _{x \rightarrow a} f(x)=L$. Let $\varepsilon>0$. Hence, there exists $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \text {, then }|f(x)-L|<\varepsilon,
$$

by Definition 1. Suppose that $0<x-a<\delta$. So, $0<|x-a|<\delta$. Thus, $|f(x)-L|<\varepsilon$.
Consequently, if $0<x-a<\delta$, then $|f(x)-L|<\varepsilon$. Therefore, $\lim _{x \rightarrow a^{+}} f(x)=L$, by Definition 2.

Theorem 2: If $\lim _{x \rightarrow a} f(x)=L$ then $\lim _{x \rightarrow a^{-}} f(x)=L$.
Proof: Suppose that $\lim _{x \rightarrow a} f(x)=L$. Let $\varepsilon>0$. Hence, there exists $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \text {, then }|f(x)-L|<\varepsilon,
$$

by Definition 1. Suppose that $0<a-x<\delta$. So, $0<|x-a|<\delta$. Thus, $|f(x)-L|<\varepsilon$.
Consequently, if $0<a-x<\delta$, then $|f(x)-L|<\varepsilon$. Therefore, $\lim _{x \rightarrow a^{-}} f(x)=L$, by Definition 3.

Theorem 3: If $\lim _{x \rightarrow a} f(x)=L$ then $\lim _{x \rightarrow a^{+}} f(x)=L=\lim _{x \rightarrow a^{-}} f(x)$.
Proof: By Theorems 2 and 3.

Theorem 4: If $\lim _{x \rightarrow a^{+}} f(x)=L=\lim _{x \rightarrow a^{-}} f(x)$, then $\lim _{x \rightarrow a} f(x)=L$.
Proof: Suppose that $\lim _{x \rightarrow a^{+}} f(x)=L=\lim _{x \rightarrow a^{-}} f(x)$. Let $\varepsilon>0$. Hence, there exists $\delta_{1}>0$ such that if $0<x-a<\delta_{1}$, then $|f(x)-L|<\varepsilon$, by Definition 2. Furthermore, there exists $\delta_{2}>0$ such that if $0<a-x<\delta_{2}$, then $|f(x)-L|<\varepsilon$, by Definition 3. Let $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$.
Suppose that $0<|x-a|<\delta$. So, either $0<x-a<\delta_{1}$ or $0<a-x<\delta_{2}$.
Case 1: Suppose that $0<x-a<\delta_{1}$. Hence, $|f(x)-L|<\varepsilon$.
Case 2: Suppose that $0<a-x<\delta_{2}$. Hence, $|f(x)-L|<\varepsilon$.
In either case, $|f(x)-L|<\varepsilon$. Consequently, if $0<|x-a|<\delta$, then $|f(x)-L|<\varepsilon$.
Therefore, $\lim _{x \rightarrow a} f(x)=L$, by Definition 1 .

Theorem 5 (The Two-Sided Limit Test): $\lim _{x \rightarrow a} f(x)=L$ if and only if $\lim _{x \rightarrow a^{+}} f(x)=L=$ $=\lim _{x \rightarrow a^{-}} f(x)$.

Proof: By Theorems 3 and 4.

Examples: a.) Let $f(x)=|x| . \lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}|x|=\lim _{x \rightarrow 0^{+}} x=0$. Furthermore, $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}|x|=\lim _{x \rightarrow 0^{-}}-x=-0=0$. Hence, $\lim _{x \rightarrow 0^{+}} f(x)=0=\lim _{x \rightarrow 0^{-}} f(x)$. Therefore, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}|x|=0$, by the Two-Sided Limit Test.
b.) Let $f(x)=\frac{|x|}{x}$. $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=\lim _{x \rightarrow 0^{+}} 1=1$. Furthermore,
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=\lim _{x \rightarrow 0^{-}}-1=-1$. Hence, $\lim _{x \rightarrow 0^{+}} f(x) \neq \lim _{x \rightarrow 0^{-}} f(x)$. Therefore,
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{|x|}{x}$, does not exist, by the Two-Sided Limit Test.

