The Weekly Rigor

No. 69

"A mathematician is a machine for turning coffee into theorems."

October 17, 2015

The Two-Sided Limit Test for Single-Variable Calculus

Definition 1: Let *f* be a function defined on some open interval that contains the number *a*, except possibly at *a* itself. Then we say that the *limit of* f(x) as *x* approaches *a* is L, and we write $\lim_{x \to a} f(x) = L$

if for every number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - L| < \varepsilon$.

Definition 2: $\lim_{x \to a^+} f(x) = L$ if for every number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that if $0 < x - a < \delta$, then $|f(x) - L| < \varepsilon$.

Definition 3:

 $\lim_{x \to \infty} f(x) = L$

if for every number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that if $0 < a - x < \delta$, then $|f(x) - L| < \varepsilon$.

Theorem 1: If $\lim_{x \to a} f(x) = L$ then $\lim_{x \to a^+} f(x) = L$.

Proof: Suppose that $\lim_{x \to a} f(x) = L$. Let $\varepsilon > 0$. Hence, there exists $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - L| < \varepsilon$, by Definition 1. Suppose that $0 < x - a < \delta$. So, $0 < |x - a| < \delta$. Thus, $|f(x) - L| < \varepsilon$. Consequently, if $0 < x - a < \delta$, then $|f(x) - L| < \varepsilon$. Therefore, $\lim_{x \to a^+} f(x) = L$, by Definition 2.

Theorem 2: If $\lim_{x \to a} f(x) = L$ then $\lim_{x \to a^-} f(x) = L$.

Proof: Suppose that $\lim_{x \to a} f(x) = L$. Let $\varepsilon > 0$. Hence, there exists $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - L| < \varepsilon$, by Definition 1. Suppose that $0 < a - x < \delta$. So, $0 < |x - a| < \delta$. Thus, $|f(x) - L| < \varepsilon$. Consequently, if $0 < a - x < \delta$, then $|f(x) - L| < \varepsilon$. Therefore, $\lim_{x \to a^-} f(x) = L$, by Definition 3.

Theorem 3: If $\lim_{x \to a} f(x) = L$ then $\lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x)$.

Proof: By Theorems 2 and 3.

Theorem 4: If $\lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x)$, then $\lim_{x \to a} f(x) = L$.

Proof: Suppose that $\lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x)$. Let $\varepsilon > 0$. Hence, there exists $\delta_1 > 0$ such that if $0 < x - a < \delta_1$, then $|f(x) - L| < \varepsilon$, by Definition 2. Furthermore, there exists $\delta_2 > 0$ such that if $0 < a - x < \delta_2$, then $|f(x) - L| < \varepsilon$, by Definition 3. Let $\delta = \min\{\delta_1, \delta_2\}$. Suppose that $0 < |x - a| < \delta$. So, either $0 < x - a < \delta_1$ or $0 < a - x < \delta_2$.

<u>Case 1:</u> Suppose that $0 < x - a < \delta_1$. Hence, $|f(x) - L| < \varepsilon$.

<u>Case 2:</u> Suppose that $0 < a - x < \delta_2$. Hence, $|f(x) - L| < \varepsilon$.

In either case, $|f(x) - L| < \varepsilon$. Consequently, if $0 < |x - a| < \delta$, then $|f(x) - L| < \varepsilon$. Therefore, $\lim_{x \to a} f(x) = L$, by Definition 1.

Theorem 5 (The Two-Sided Limit Test): $\lim_{x \to a} f(x) = L$ if and only if $\lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x)$.

Proof: By Theorems 3 and 4.

Examples: a.) Let f(x) = |x|. $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} |x| = \lim_{x \to 0^+} x = 0$. Furthermore, $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} |x| = \lim_{x \to 0^-} -x = -0 = 0$. Hence, $\lim_{x \to 0^+} f(x) = 0 = \lim_{x \to 0^-} f(x)$. Therefore, $\lim_{x \to 0} f(x) = \lim_{x \to 0} |x| = 0$, by the Two-Sided Limit Test.

b.) Let $f(x) = \frac{|x|}{x}$. $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = \lim_{x \to 0^+} 1 = 1$. Furthermore, $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{|x|}{x} = \lim_{x \to 0^-} \frac{-x}{x} = \lim_{x \to 0^-} -1 = -1$. Hence, $\lim_{x \to 0^+} f(x) \neq \lim_{x \to 0^-} f(x)$. Therefore,

 $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{|x|}{x}$, does not exist, by the Two-Sided Limit Test.

"Only he who never plays, never loses."

Written and published every Saturday by Richard Shedenhelm