The Weekly Rigor

No. 70

"A mathematician is a machine for turning coffee into theorems."

October 24, 2015

Limits of Real Number Sequences and Their Reciprocals(Part 1)

Definition 1: A sequence $\{a_n\}$ has the *limit L* and we write

$$\lim_{n\to\infty} a_n = L$$

if for every $\varepsilon > 0$ there is a corresponding integer N such that

if
$$n > N$$
, then $|a_n - L| < \varepsilon$.

Definition 2: $\lim_{n\to\infty} a_n = +\infty$ means that for every M>0 there is an integer N such that if n>N, then $a_n>M$.

Definition 3: $\lim_{n \to \infty} a_n = -\infty$ means that for every M < 0 there is an integer N such that if n > N, then $a_n < M$.

Theorem 1: $\lim_{n\to\infty} a_n = L \neq 0$ if and only if $\lim_{n\to\infty} \frac{1}{a_n} = \frac{1}{L}$.

Proof: Suppose that $\lim_{n\to\infty} a_n = L \neq 0$. $\lim_{n\to\infty} 1 = 1$. Therefore, $\lim_{n\to\infty} \frac{1}{a_n} = \frac{\lim_{n\to\infty} 1}{\lim_{n\to\infty} a_n} = \frac{1}{L}$, by the limit laws and substitution.

Suppose that $\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{L}$. Hence, $L\neq 0$ and $a_n\neq 0$ for any n. So, $\lim_{n\to\infty}\frac{1}{a_n}=\frac{\lim_{n\to\infty}1}{\lim_{n\to\infty}a_n}=\frac{1}{\lim_{n\to\infty}a_n}$, by the limit laws. Consequently, $\frac{1}{\lim_{n\to\infty}a_n}=\frac{1}{L}$. Therefore, $\lim_{n\to\infty}a_n=L\neq 0$.

Remark: In the following theorems, each term of the sequence a_n is a positive real number.

Theorem 2: $\lim_{n\to\infty} a_n = 0$ if and only if $\lim_{n\to\infty} \frac{1}{a_n} = +\infty$.

Proof: Suppose that $\lim_{n\to\infty} a_n = 0$. Let M>0 be given and set $\varepsilon = \frac{1}{M}$. Hence, $\varepsilon>0$. So, there exists an integer N such that if n>N, then $|a_n-0|<\varepsilon=\frac{1}{M}$, by Definition 1. Thus, since $a_n>0$, if n>N, then $0<a_n<\frac{1}{M}$. Hence, if n>N, then $\frac{1}{a_n}>M$. Consequently, $\lim_{n\to\infty}\frac{1}{a_n}=+\infty$, by Definition 2. Therefore, if $\lim_{n\to\infty} a_n=0$, then $\lim_{n\to\infty}\frac{1}{a_n}=+\infty$.

Suppose that $\lim_{n\to\infty}\frac{1}{a_n}=+\infty$. Let $\varepsilon>0$ be given and set $M=\frac{1}{\varepsilon}$. Hence, M>0. So, there exists an integer N such that if n>N, then $\frac{1}{a_n}>M=\frac{1}{\varepsilon}$, by Definition 2. Thus, since $a_n>0$, if n>N, then $a_n<\varepsilon$. Hence, if n>N, then $|a_n-0|<\varepsilon$. Consequently, $\lim_{n\to\infty}a_n=0$, by Definition 1. Therefore, if $\lim_{n\to\infty}\frac{1}{a_n}=+\infty$, then $\lim_{n\to\infty}a_n=0$.

Theorem 3: $\lim_{n\to\infty} -a_n = 0$ if and only if $\lim_{n\to\infty} \frac{-1}{a_n} = -\infty$.

Proof: Suppose that $\lim_{n\to\infty} -a_n = 0$. Let M < 0 be given and set $\varepsilon = \frac{-1}{M}$. Hence, $\varepsilon > 0$. So, there exists an integer N such that if n > N, then $|-a_n - 0| < \varepsilon = \frac{-1}{M}$, by Definition 1. Thus, since $a_n > 0$, if n > N, then $a_n < \varepsilon = \frac{-1}{M}$. Hence, if n > N, then $\frac{-1}{a_n} < M$. Consequently, $\lim_{n\to\infty} \frac{-1}{a_n} = -\infty$, by Definition 3. Therefore, if $\lim_{n\to\infty} -a_n = 0$, then $\lim_{n\to\infty} \frac{-1}{a_n} = -\infty$. Suppose that $\lim_{n\to\infty} \frac{-1}{a_n} = -\infty$. Let $\varepsilon > 0$ be given and set $M = \frac{-1}{\varepsilon}$. Hence, M < 0. So, there exists an integer N such that if n > N, then $\frac{-1}{a_n} < M = \frac{-1}{\varepsilon}$, by Definition 3. Thus, since $a_n > 0$, if n > N, then $-\varepsilon < -a_n < 0$. Hence, if n > N, then $0 < a_n < \varepsilon$. But $a_n = |a_n| = |-a_n|$. So, if n > N, then $|-a_n - 0| < \varepsilon$, by substitution. Consequently, $\lim_{n\to\infty} -a_n = 0$, by

Definition 1. Therefore, if $\lim_{n\to\infty}\frac{-1}{a_n}=-\infty$, then $\lim_{n\to\infty}-a_n=0$.

"Only he who never plays, never loses."