©he 相peklg Tingar

Limits of Real Number Sequences and Their Reciprocals

Definition 1: A sequence $\left\{a_{n}\right\}$ has the limit L and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

if for every $\varepsilon>0$ there is a corresponding integer N such that

$$
\text { if } n>N \text {, then }\left|a_{n}-L\right|<\varepsilon .
$$

Definition 2: $\lim _{n \rightarrow \infty} a_{n}=+\infty$ means that for every $M>0$ there is an integer N such that

$$
\text { if } n>N \text {, then } a_{n}>M .
$$

Definition 3: $\lim _{n \rightarrow \infty} a_{n}=-\infty$ means that for every $M<0$ there is an integer N such that if $n>N$, then $a_{n}<M$.

Theorem 1: $\lim _{n \rightarrow \infty} a_{n}=L \neq 0$ if and only if $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=\frac{1}{L}$.
Proof: Suppose that $\lim _{n \rightarrow \infty} a_{n}=L \neq 0$. $\lim _{n \rightarrow \infty} 1=1$. Therefore, $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=\frac{\lim _{n \rightarrow \infty} 1}{\lim _{n \rightarrow \infty} ~_{n}}=\frac{1}{L}$, by the limit laws and substitution.

Suppose that $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=\frac{1}{L}$. Hence, $L \neq 0$ and $a_{n} \neq 0$ for any n. So, $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=\frac{\lim _{n \rightarrow \infty} 1}{\lim _{n \rightarrow \infty} a_{n}}=$ $=\frac{1}{\lim _{n \rightarrow \infty} a_{n}}$, by the limit laws. Consequently, $\frac{1}{\lim _{n \rightarrow \infty} a_{n}}=\frac{1}{L}$. Therefore, $\lim _{n \rightarrow \infty} a_{n}=L \neq 0$.

Remark: In the following theorems, each term of the sequence a_{n} is a positive real number.

Theorem 2: $\lim _{n \rightarrow \infty} a_{n}=0$ if and only if $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=+\infty$.
Proof: Suppose that $\lim _{n \rightarrow \infty} a_{n}=0$. Let $M>0$ be given and set $\varepsilon=\frac{1}{M}$. Hence, $\varepsilon>0$. So, there exists an integer N such that if $n>N$, then $\left|a_{n}-0\right|<\varepsilon=\frac{1}{M}$, by Definition 1. Thus, since $a_{n}>0$, if $n>N$, then $0<a_{n}<\frac{1}{M}$. Hence, if $n>N$, then $\frac{1}{a_{n}}>M$. Consequently, $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=$ $+\infty$, by Definition 2. Therefore, if $\lim _{n \rightarrow \infty} a_{n}=0$, then $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=+\infty$.

Suppose that $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=+\infty$. Let $\varepsilon>0$ be given and set $M=\frac{1}{\varepsilon}$. Hence, $M>0$. So, there exists an integer N such that if $n>N$, then $\frac{1}{a_{n}}>M=\frac{1}{\varepsilon}$, by Definition 2. Thus, since $a_{n}>0$, if $n>N$, then $a_{n}<\varepsilon$. Hence, if $n>N$, then $\left|a_{n}-0\right|<\varepsilon$. Consequently, $\lim _{n \rightarrow \infty} a_{n}=0$, by Definition 1. Therefore, if $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=+\infty$, then $\lim _{n \rightarrow \infty} a_{n}=0$.

Theorem 3: $\lim _{n \rightarrow \infty}-a_{n}=0$ if and only if $\lim _{n \rightarrow \infty} \frac{-1}{a_{n}}=-\infty$.
Proof: Suppose that $\lim _{n \rightarrow \infty}-a_{n}=0$. Let $M<0$ be given and set $\varepsilon=\frac{-1}{M}$. Hence, $\varepsilon>0$. So, there exists an integer N such that if $n>N$, then $\left|-a_{n}-0\right|<\varepsilon=\frac{-1}{M}$, by Definition 1. Thus, since $a_{n}>0$, if $n>N$, then $a_{n}<\varepsilon=\frac{-1}{M}$. Hence, if $n>N$, then $\frac{-1}{a_{n}}<M$. Consequently, $\lim _{n \rightarrow \infty} \frac{-1}{a_{n}}=-\infty$, by Definition 3. Therefore, if $\lim _{n \rightarrow \infty}-a_{n}=0$, then $\lim _{n \rightarrow \infty} \frac{-1}{a_{n}}=-\infty$.

Suppose that $\lim _{n \rightarrow \infty} \frac{-1}{a_{n}}=-\infty$. Let $\varepsilon>0$ be given and set $M=\frac{-1}{\varepsilon}$. Hence, $M<0$. So, there exists an integer N such that if $n>N$, then $\frac{-1}{a_{n}}<M=\frac{-1}{\varepsilon}$, by Definition 3. Thus, since $a_{n}>0$, if $n>N$, then $-\varepsilon<-a_{n}<0$. Hence, if $n>N$, then $0<a_{n}<\varepsilon$. But $a_{n}=\left|a_{n}\right|=$ $=\left|-a_{n}\right|$. So, if $n>N$, then $\left|-a_{n}-0\right|<\varepsilon$, by substitution. Consequently, $\lim _{n \rightarrow \infty}-a_{n}=0$, by Definition 1. Therefore, if $\lim _{n \rightarrow \infty} \frac{-1}{a_{n}}=-\infty$, then $\lim _{n \rightarrow \infty}-a_{n}=0$.

