The 䀦rekly Tingar

Limits of Real Number Sequences and Their Reciprocals

(Part 2)

Theorem 4: $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$ if and only if $\lim _{n \rightarrow \infty} a_{n}=+\infty$.
Proof: Suppose that $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$. Let $M>0$ be given and set $\varepsilon=\frac{1}{M}$. Hence, $\varepsilon>0$. So, there exists an integer N such that if $n>N$, then $\left|\frac{1}{a_{n}}-0\right|<\varepsilon=\frac{1}{M}$, by Definition 1. Thus, since $a_{n}>0$, if $n>N$, then $0<\frac{1}{a_{n}}<\frac{1}{M}$. Hence, if $n>N$, then $a_{n}>M$. Consequently, $\lim _{n \rightarrow \infty} a_{n}=$ $+\infty$, by Definition 2. Therefore, if $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$, then $\lim _{n \rightarrow \infty} a_{n}=+\infty$.

Suppose that $\lim _{n \rightarrow \infty} a_{n}=+\infty$. Let $\varepsilon>0$ be given and set $M=\frac{1}{\varepsilon}$. Hence, $M>0$. So, there exists an integer N such that if $n>N$, then $a_{n}>M=\frac{1}{\varepsilon}$, by Definition 2. Thus, since $a_{n}>0$, if $n>N$, then $\varepsilon>\frac{1}{a_{n}}>0$. Hence, if $n>N$, then $\left|\frac{1}{a_{n}}-0\right|<\varepsilon$. Consequently, $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$, by Definition 1. Therefore, if $\lim _{n \rightarrow \infty} a_{n}=+\infty$, then $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$.

Theorem 5: $\lim _{n \rightarrow \infty} \frac{-1}{a_{n}}=0$ if and only if $\lim _{n \rightarrow \infty}-a_{n}=-\infty$.
Proof: Suppose that $\lim _{n \rightarrow \infty} \frac{-1}{a_{n}}=0$. Let $M<0$ be given and set $\varepsilon=\frac{-1}{M}$. Hence, $\varepsilon>0$. So, there exists an integer N such that if $n>N$, then $\left|\frac{-1}{a_{n}}-0\right|<\varepsilon=\frac{-1}{M}$, by Definition 1. But $\left|\frac{-1}{a_{n}}-0\right|=\left|\frac{-1}{a_{n}}\right|=\frac{1}{a_{n}}$. Thus, since $a_{n}>0$, if $n>N$, then $\frac{1}{a_{n}}<\varepsilon=\frac{-1}{M}$, by substitution. Hence, if $n>N$, then $a_{n}>-M$. So, , if $n>N$, then $-a_{n}<M$. Consequently, $\lim _{n \rightarrow \infty}-a_{n}=-\infty$, by Definition 3. Therefore, if $\lim _{n \rightarrow \infty} \frac{-1}{a_{n}}=0$, then $\lim _{n \rightarrow \infty}-a_{n}=-\infty$.

Suppose that $\lim _{n \rightarrow \infty}-a_{n}=-\infty$. Let $\varepsilon>0$ be given and set $M=\frac{-1}{\varepsilon}$. Hence, $M<0$. So, there exists an integer N such that if $n>N$, then $-a_{n}<M=\frac{-1}{\varepsilon}$, by Definition 3. Thus, since $a_{n}>0$, if $n>N$, then $-\varepsilon<\frac{-1}{a_{n}}<0$. Hence, if $n>N$, then $0<\frac{1}{a_{n}}<\varepsilon$. But $\left|\frac{-1}{a_{n}}\right|=\frac{1}{a_{n}}$. So, if $n>N$, then $\left|\frac{-1}{a_{n}}-0\right|<\varepsilon$, by substitution. Consequently, $\lim _{n \rightarrow \infty} \frac{-1}{a_{n}}=0$, by Definition 1 . Therefore, if $\lim _{n \rightarrow \infty}-a_{n}=-\infty$, then $\lim _{n \rightarrow \infty} \frac{-1}{a_{n}}=0$.
"Only he who never plays, never loses."

