The Weekly Rigor

No. 73

"A mathematician is a machine for turning coffee into theorems."

November 14, 2015

Pedagogical Introduction to the Fundamental Horizontal Asymptotes of Rational Functions

(Part 2)

Having proven that $\lim_{x \to +\infty} \frac{1}{x} = 0$, we may wonder what effect increasing the power of the *x* in the denominator may have on the value of the horizontal asymptote. The next theorem begins to address that question. Note that the proof depends on the relationship of $x^2 > x$, which itself requires that *x* be greater than 1. Hence the assignment of *N* to be at least as great as 1.

Theorem 2:

$$\lim_{x \to +\infty} \frac{1}{x^2} = 0.$$

Proof: Let $\varepsilon > 0$ be given and set $N = \max\left\{1, \frac{1}{\varepsilon}\right\}$. Hence, N > 0.

Suppose that x > N. Hence, $x > \frac{1}{\varepsilon}$, by substitution. Furthermore, x > 1. So, $x^2 > x$. Thus, $x^2 > \frac{1}{\varepsilon}$. Hence, $\frac{1}{x^2} < \varepsilon$. So, $\left|\frac{1}{x^2}\right| < \varepsilon$. Thus, $\left|\frac{1}{x^2} - 0\right| < \varepsilon$. Consequently, if x > N, then $\left|\frac{1}{x^2} - 0\right| < \varepsilon$. Therefore, $\lim_{x \to +\infty} \frac{1}{x^2} = 0$, by Definition 1.

Next we may wonder what effect a larger positive constant in the numerator will have on the value of the horizontal asymptote. That is the purpose of the next theorem.

Theorem 3:

$$\lim_{x \to +\infty} \frac{4}{x} = 0.$$

Proof: Let $\varepsilon > 0$ be given and set $N = \frac{4}{\varepsilon}$. Hence, N > 0. Suppose that x > N. Hence, $x > \frac{4}{\varepsilon}$, by substitution. So, $\frac{1}{x} < \frac{\varepsilon}{4}$. Thus, $\frac{4}{x} < \varepsilon$. Thus, since x > 0, $\left|\frac{4}{x}\right| < \varepsilon$. Hence, $\left|\frac{4}{x} - 0\right| < \varepsilon$. Consequently, if x > N, then $\left|\frac{4}{x} - 0\right| < \varepsilon$. Therefore, $\lim_{x \to +\infty} \frac{4}{x} = 0$, by Definition 1. Next let us put together the augmentation both of the power of the x in the denominator with the value of the positive constant in the numerator to see if any change in the horizontal asymptote results.

$$\lim_{x \to +\infty} \frac{4}{x^2} = 0.$$

Proof: Let $\varepsilon > 0$ be given and set $N = max \left\{1, \frac{4}{\varepsilon}\right\}$. Hence, N > 0. Suppose that x > N. Hence, $x > \frac{4}{\varepsilon}$, by substitution. Furthermore, x > 1. So, $x^2 > x$. Thus, $x^2 > \frac{4}{\varepsilon}$. Hence, $\frac{1}{x^2} < \frac{\varepsilon}{4}$. So, $\frac{4}{x^2} < \varepsilon$. Thus, $\left|\frac{4}{x^2}\right| < \varepsilon$. Hence, $\left|\frac{4}{x^2} - 0\right| < \varepsilon$. Consequently, if x > N, then $\left|\frac{4}{x^2} - 0\right| < \varepsilon$. Therefore, $\lim_{x \to +\infty} \frac{4}{x^2} = 0$, by Definition 1.

Finally, we may wonder if there is any significant difference when the constant in the numerator is a negative number.

Theorem 5:
$$\lim_{x \to +\infty} \frac{-4}{x^2} = 0.$$

Theorem 4:

Proof: Let $\varepsilon > 0$ be given and set $N = max \left\{ 1, \frac{4}{\varepsilon} \right\}$. Hence, N > 0. Suppose that x > N. Hence, $x > \frac{4}{\varepsilon}$, by substitution. Furthermore, x > 1. So, $x^2 > x$. Thus, $x^2 > \frac{4}{\varepsilon}$. Hence, $\frac{1}{x^2} < \frac{\varepsilon}{4}$. So, $\frac{4}{x^2} < \varepsilon$. But $\left| \frac{-4}{x^2} \right| = \frac{4}{x^2}$. Thus, $\left| \frac{-4}{x^2} \right| < \varepsilon$. Hence, $\left| \frac{-4}{x^2} - 0 \right| < \varepsilon$. Consequently, if x > N, then $\left| \frac{-4}{x^2} - 0 \right| < \varepsilon$. Therefore, $\lim_{x \to +\infty} \frac{-4}{x^2} = 0$, by Definition 1.

"Only he who never plays, never loses."

Written and published every Saturday by Richard Shedenhelm