The meekly mignr

No. 73 "A mathematician is a machine for turning coffee into theorems." November 14, 2015

Pedagogical Introduction to the Fundamental Horizontal Asymptotes of Rational Functions

(Part 2)
Having proven that $\lim _{x \rightarrow+\infty} \frac{1}{x}=0$, we may wonder what effect increasing the power of the x in the denominator may have on the value of the horizontal asymptote. The next theorem begins to address that question. Note that the proof depends on the relationship of $x^{2}>x$, which itself requires that x be greater than 1 . Hence the assignment of N to be at least as great as 1.

Theorem 2:

$$
\lim _{x \rightarrow+\infty} \frac{1}{x^{2}}=0
$$

Proof: Let $\varepsilon>0$ be given and set $N=\max \left\{1, \frac{1}{\varepsilon}\right\}$. Hence, $N>0$.
Suppose that $x>N$. Hence, $x>\frac{1}{\varepsilon}$, by substitution. Furthermore, $x>1$. So, $x^{2}>x$. Thus, $x^{2}>\frac{1}{\varepsilon}$. Hence, $\frac{1}{x^{2}}<\varepsilon$. So, $\left|\frac{1}{x^{2}}\right|<\varepsilon$. Thus, $\left|\frac{1}{x^{2}}-0\right|<\varepsilon$. Consequently, if $x>N$, then $\left|\frac{1}{x^{2}}-0\right|<\varepsilon$.

Therefore, $\lim _{x \rightarrow+\infty} \frac{1}{x^{2}}=0$, by Definition 1 .

Next we may wonder what effect a larger positive constant in the numerator will have on the value of the horizontal asymptote. That is the purpose of the next theorem.

Theorem 3:

$$
\lim _{x \rightarrow+\infty} \frac{4}{x}=0 .
$$

Proof: Let $\varepsilon>0$ be given and set $N=\frac{4}{\varepsilon}$. Hence, $N>0$.
Suppose that $x>N$. Hence, $x>\frac{4}{\varepsilon}$, by substitution. So, $\frac{1}{x}<\frac{\varepsilon}{4}$. Thus, $\frac{4}{x}<\varepsilon$.
Thus, since $x>0,\left|\frac{4}{x}\right|<\varepsilon$. Hence, $\left|\frac{4}{x}-0\right|<\varepsilon$. Consequently, if $x>N$, then $\left|\frac{4}{x}-0\right|<\varepsilon$.
Therefore, $\lim _{x \rightarrow+\infty} \frac{4}{x}=0$, by Definition 1 .

Next let us put together the augmentation both of the power of the x in the denominator with the value of the positive constant in the numerator to see if any change in the horizontal asymptote results.

Theorem 4:

$$
\lim _{x \rightarrow+\infty} \frac{4}{x^{2}}=0
$$

Proof: Let $\varepsilon>0$ be given and set $N=\max \left\{1, \frac{4}{\varepsilon}\right\}$. Hence, $N>0$.
Suppose that $x>N$. Hence, $x>\frac{4}{\varepsilon}$, by substitution. Furthermore, $x>1$. So, $x^{2}>x$. Thus, $x^{2}>\frac{4}{\varepsilon}$. Hence, $\frac{1}{x^{2}}<\frac{\varepsilon}{4}$. So, $\frac{4}{x^{2}}<\varepsilon$. Thus, $\left|\frac{4}{x^{2}}\right|<\varepsilon$. Hence, $\left|\frac{4}{x^{2}}-0\right|<\varepsilon$. Consequently, if $x>N$, then $\left|\frac{4}{x^{2}}-0\right|<\varepsilon$.

Therefore, $\lim _{x \rightarrow+\infty} \frac{4}{x^{2}}=0$, by Definition 1 .

Finally, we may wonder if there is any significant difference when the constant in the numerator is a negative number.

Theorem 5:

$$
\lim _{x \rightarrow+\infty} \frac{-4}{x^{2}}=0
$$

Proof: Let $\varepsilon>0$ be given and set $N=\max \left\{1, \frac{4}{\varepsilon}\right\}$. Hence, $N>0$.
Suppose that $x>N$. Hence, $x>\frac{4}{\varepsilon}$, by substitution. Furthermore, $x>1$. So, $x^{2}>x$. Thus, $x^{2}>\frac{4}{\varepsilon}$. Hence, $\frac{1}{x^{2}}<\frac{\varepsilon}{4}$. So, $\frac{4}{x^{2}}<\varepsilon$. But $\left|\frac{-4}{x^{2}}\right|=\frac{4}{x^{2}}$. Thus, $\left|\frac{-4}{x^{2}}\right|<\varepsilon$. Hence, $\left|\frac{-4}{x^{2}}-0\right|<\varepsilon$. Consequently, if $x>N$, then $\left|\frac{-4}{x^{2}}-0\right|<\varepsilon$.

Therefore, $\lim _{x \rightarrow+\infty} \frac{-4}{x^{2}}=0$, by Definition 1 .

