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Functions 
 

INTRODUCTION 

 

 This article carries on in the spirit of the previous article by generalizing the principles 

proved in the latter.   

 

 

Definition 1:  Let f be a function that is defined on some infinite open interval (𝑎, +∞).  We 

shall write  

lim
𝑥→+∞

𝑓(𝑥) = 𝐿 

if given any number 𝜀 > 0, there corresponds a positive number N such that  

if 𝑥 > 𝑁, then |𝑓(𝑥) − 𝐿| < 𝜀. 

 

 

Theorem 1:   lim
𝑥→+∞

𝑐

𝑥𝑛
= 0 for 𝑐 ∈ ℝ+ and 𝑛 ∈ ℤ+. 

 

Proof:  Let 𝜀 > 0 be given and set 𝑁 = 𝑚𝑎𝑥 {1,
𝑐

𝜀
}, where 𝑐 ∈ ℝ+.  Hence, 𝑁 > 0.   

 Suppose that 𝑥 > 𝑁.  Hence, 𝑥 >
𝑐

𝜀
, by substitution.  Furthermore, 𝑥 > 1.  So, 𝑥𝑛 > 𝑥 for 

𝑛 ∈ ℤ+.  Thus, 𝑥𝑛 >
𝑐

𝜀
.  Hence, 

1

𝑥𝑛
<

𝜀

𝑐
.  So, 

𝑐

𝑥𝑛
< 𝜀.  Thus, |

𝑐

𝑥𝑛
| < 𝜀.  Hence, |

𝑐

𝑥𝑛
− 0| < 𝜀.  

Consequently, if 𝑥 > 𝑁, then |
𝑐

𝑥𝑛
− 0| < 𝜀. 

 Therefore, lim
𝑥→+∞

𝑐

𝑥𝑛
= 0 for 𝑐 ∈ ℝ+ and 𝑛 ∈ ℤ+, by Definition 1. 


 

 

Remark:  Cf. Theorem 4 of WR no. 73. 

 

  



Theorem 2:   lim
𝑥→+∞

−𝑐

𝑥𝑛
= 0 for 𝑐 ∈ ℝ+ and 𝑛 ∈ ℤ+. 

 

Proof:  Let 𝜀 > 0 be given and set 𝑁 = 𝑚𝑎𝑥 {1,
𝑐

𝜀
}.  Hence, 𝑁 > 0.   

 Suppose that 𝑥 > 𝑁.  Hence, 𝑥 >
𝑐

𝜀
, by substitution.  Furthermore, 𝑥 > 1.  So, 𝑥𝑛 > 𝑥 for 

𝑛 ∈ ℤ+.  Thus, 𝑥𝑛 >
𝑐

𝜀
.  Hence, 

1

𝑥𝑛
<

𝜀

𝑐
.  So, 

𝑐

𝑥𝑛
< 𝜀.  But |

−𝑐

𝑥𝑛
| =

𝑐

𝑥𝑛
.  Thus, |

−𝑐

𝑥𝑛
| < 𝜀.  Hence, 

|
−𝑐

𝑥𝑛
− 0| < 𝜀.  Consequently, if 𝑥 > 𝑁, then |

−𝑐

𝑥𝑛
− 0| < 𝜀. 

 Therefore, lim
𝑥→+∞

−𝑐

𝑥𝑛
= 0, by Definition 1. 


 

 

Remark:  Cf. Theorem 5 of WR no. 73. 

 

 

Theorem 3:   lim
𝑥→+∞

0

𝑥𝑛
= 0 for 𝑛 ∈ ℤ+. 

 

Proof:  Let 𝜀 > 0 be given and set 𝑁 =
1

𝜀
.  Hence, 𝑁 > 0.   

 Suppose that 𝑥 > 𝑁.  Hence, 𝑥 >
1

𝜀
, by substitution.  So, 

1

𝑥
< 𝜀.  Thus, since 𝑥 > 0,  

|
0

𝑥
| =

0

𝑥
<

1

𝑥
< 𝜀.  Hence, |

0

𝑥
− 0| < 𝜀.  Consequently, if 𝑥 > 𝑁, then |

0

𝑥
− 0| < 𝜀. 

 Therefore, lim
𝑥→+∞

0

𝑥
= 0, by Definition 1. 


 

 

Theorem 4:   lim
𝑥→+∞

𝑐

𝑥𝑛
= 0 for 𝑐 ∈ ℝ and 𝑛 ∈ ℤ+. 

 

Proof:  By Theorems 1-3. 

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