The 䀦rekly Tingar

Introduction to the Fundamental Horizontal Asymptotes of Rational Functions

INTRODUCTION

This article carries on in the spirit of the previous article by generalizing the principles proved in the latter.

Definition 1: Let f be a function that is defined on some infinite open interval $(a,+\infty)$. We shall write

$$
\lim _{x \rightarrow+\infty} f(x)=L
$$

if given any number $\varepsilon>0$, there corresponds a positive number N such that

$$
\text { if } x>N \text {, then }|f(x)-L|<\varepsilon .
$$

Theorem 1: $\quad \lim _{x \rightarrow+\infty} \frac{c}{x^{n}}=0$ for $c \in \mathbb{R}^{+}$and $n \in \mathbb{Z}^{+}$.
Proof: Let $\varepsilon>0$ be given and set $N=\max \left\{1, \frac{c}{\varepsilon}\right\}$, where $c \in \mathbb{R}^{+}$. Hence, $N>0$.
Suppose that $x>N$. Hence, $x>\frac{c}{\varepsilon}$, by substitution. Furthermore, $x>1$. So, $x^{n}>x$ for $n \in \mathbb{Z}^{+}$. Thus, $x^{n}>\frac{c}{\varepsilon}$. Hence, $\frac{1}{x^{n}}<\frac{\varepsilon}{c}$. So, $\frac{c}{x^{n}}<\varepsilon$. Thus, $\left|\frac{c}{x^{n}}\right|<\varepsilon$. Hence, $\left|\frac{c}{x^{n}}-0\right|<\varepsilon$. Consequently, if $x>N$, then $\left|\frac{c}{x^{n}}-0\right|<\varepsilon$.

Therefore, $\lim _{x \rightarrow+\infty} \frac{c}{x^{n}}=0$ for $c \in \mathbb{R}^{+}$and $n \in \mathbb{Z}^{+}$, by Definition 1 .

Remark: Cf. Theorem 4 of $W R$ no. 73.

Theorem 2: $\quad \lim _{x \rightarrow+\infty} \frac{-c}{x^{n}}=0$ for $c \in \mathbb{R}^{+}$and $n \in \mathbb{Z}^{+}$.
Proof: Let $\varepsilon>0$ be given and set $N=\max \left\{1, \frac{c}{\varepsilon}\right\}$. Hence, $N>0$.
Suppose that $x>N$. Hence, $x>\frac{c}{\varepsilon}$, by substitution. Furthermore, $x>1$. So, $x^{n}>x$ for $n \in \mathbb{Z}^{+}$. Thus, $x^{n}>\frac{c}{\varepsilon}$. Hence, $\frac{1}{x^{n}}<\frac{\varepsilon}{c}$. So, $\frac{c}{x^{n}}<\varepsilon$. But $\left|\frac{-c}{x^{n}}\right|=\frac{c}{x^{n}}$. Thus, $\left|\frac{-c}{x^{n}}\right|<\varepsilon$. Hence, $\left|\frac{-c}{x^{n}}-0\right|<\varepsilon$. Consequently, if $x>N$, then $\left|\frac{-c}{x^{n}}-0\right|<\varepsilon$.

Therefore, $\lim _{x \rightarrow+\infty} \frac{-c}{x^{n}}=0$, by Definition 1 .

Remark: Cf. Theorem 5 of $W R$ no. 73.

Theorem 3: $\quad \lim _{x \rightarrow+\infty} \frac{0}{x^{n}}=0$ for $n \in \mathbb{Z}^{+}$.
Proof: Let $\varepsilon>0$ be given and set $N=\frac{1}{\varepsilon}$. Hence, $N>0$.
Suppose that $x>N$. Hence, $x>\frac{1}{\varepsilon}$, by substitution. So, $\frac{1}{x}<\varepsilon$. Thus, since $x>0$, $\left|\frac{0}{x}\right|=\frac{0}{x}<\frac{1}{x}<\varepsilon$. Hence, $\left|\frac{0}{x}-0\right|<\varepsilon$. Consequently, if $x>N$, then $\left|\frac{0}{x}-0\right|<\varepsilon$.

Therefore, $\lim _{x \rightarrow+\infty} \frac{0}{x}=0$, by Definition 1 .

Theorem 4: $\quad \lim _{x \rightarrow+\infty} \frac{c}{x^{n}}=0$ for $c \in \mathbb{R}$ and $n \in \mathbb{Z}^{+}$.
Proof: By Theorems 1-3.

