The Weekly Rigor

No. 75

"A mathematician is a machine for turning coffee into theorems."

November 28, 2015

The Triangle Inequality

INTRODUCTION

A crucially important principle in analysis is the Triangle Inequality. This article will establish this principle "from the ground up."

Definition 1: The *absolute value* or *magnitude* of a real number *a* is denoted by "|a|" and is defined by |a| = a if $a \ge 0$ |a| = -a if a < 0.

Theorem 1: $|a| \le c$ if and only if for $-c \le a \le c$ for $a, c \in \mathbb{R}$.

Proof: Suppose that $|a| \le c$. Either $a \ge 0$ or a < 0. <u>Case 1:</u> Suppose that $a \ge 0$. Hence, |a| = a, by Definition 1. So, $a \le c$, by substitution. Thus, $-a \ge -c$, viz., $-c \le -a$. But $-a \le a$. Consequently, $-c \le a \le c$. <u>Case 2:</u> Suppose that a < 0. Hence, |a| = -a, by Definition 1. So, $-a \le c$, by substitution. Thus, $a \ge -c$, viz., $-c \le a$. But since a < 0, $a \le -a$. Consequently, $-c \le a \le c$. In either case, $-c \le a \le c$.

Suppose that $-c \le a \le c$. Either $a \ge 0$ or a < 0. <u>Case 1:</u> Suppose that $a \ge 0$. Hence, |a| = a, by Definition 1. So, $-c \le |a| \le c$, by substitution. Thus, $|a| \le c$. <u>Case 2:</u> Suppose that a < 0. Hence, |a| = -a, by Definition 1. So, -|a| = a. Thus, $-c \le -|a| \le c$, by substitution. Hence, $c \ge |a| \ge -c$, viz., $-c \le |a| \le c$. So, $|a| \le c$. In either case, $|a| \le c$.

Theorem 2: $-|a| \le a \le |a|$ for $a \in \mathbb{R}$.

Proof: Either $a \ge 0$ or a < 0. <u>Case 1:</u> Suppose that $a \ge 0$. Hence, |a| = a, by Definition 1. Furthermore, $-a \le a \le a$. So, $-|a| \le a \le |a|$, by substitution. <u>Case 2:</u> Suppose that a < 0. Hence, |a| = -a, by Definition 1. So, -|a| = a. Furthermore, $a \le a \le -a$. Thus, $-|a| \le a \le |a|$, by substitution. In either case, $-|a| \le a \le |a|$.

Theorem 3 (The Triangle Inequality): $|a + b| \le |a| + |b|$ for any $a, b \in \mathbb{R}$.

Proof: $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$, by Theorem 2. Hence, $-(|a| + |b|) \le a + b \le (|a| + |b|)$. So, $|a + b| \le |a| + |b|$, by Theorem 1.

"Only he who never plays, never loses."

Written and published every Saturday by Richard Shedenhelm