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Introduction to the Constant, Constant Multiple, Sum, and Difference Rules 

for Horizontal Asymptotes of Rational Functions 

(Part 1) 
 

INTRODUCTION 

 

 This article will lay out the proofs of the basic rules a student needs to algebraically 

determine the horizontal asymptote of a rational function.  After the proofs, three solved 

problems will illustrate the use of the rules to address the three types of rational functions. 

 

 

Theorem 1 (The Constant Rule): lim
𝑥→+∞

𝑐 = 𝑐 for any constant 𝑐 ∈ ℝ. 

 

Preliminary Remark:  In words:  The limit of a constant is equal to the constant. 

 

Proof:  Let 𝜀 > 0 be given and set 𝑁 = 𝜀.  Hence, 𝑁 > 0.   

 Suppose that 𝑥 > 𝑁.  Since 𝜀 > 0, 0 < 𝜀.  |𝑐 − 𝑐| = 0 for any constant 𝑐 ∈ ℝ.  Hence, 
|𝑐 − 𝑐| < 𝜀, by substitution.  Consequently, if 𝑥 > 𝑁, then |𝑐 − 𝑐| < 𝜀. 

 Therefore, lim
𝑥→+∞

𝑐 = 𝑐 for any constant 𝑐 ∈ ℝ, by Definition 1 of WR no. 74. 


 

 

Theorem 2 (The Sum Rule):   If lim
𝑥→+∞

𝑓(𝑥) = 𝐿1 and lim
𝑥→+∞

𝑔(𝑥) = 𝐿2,  

   then lim
𝑥→+∞

[𝑓(𝑥) + 𝑔(𝑥)] = 𝐿1 + 𝐿2. 

 

Preliminary Remark:  In words:  The limit of a sum is the sum of the limits. 

 

Proof:  Suppose that lim
𝑥→+∞

𝑓(𝑥) = 𝐿1 and lim
𝑥→+∞

𝑔(𝑥) = 𝐿2.  Hence, since  

lim
𝑥→+∞

𝑓(𝑥) = 𝐿1, given any number 𝜀1 > 0, there corresponds a positive number 𝑁1 such that if 

𝑥 > 𝑁1, then |𝑓(𝑥) − 𝐿1| < 𝜀1, by Definition 1 of WR no. 74.  Furthermore, since  

lim
𝑥→+∞

𝑔(𝑥) = 𝐿2, given any number 𝜀2 > 0, there corresponds a positive number 𝑁2 such that if 

𝑥 > 𝑁2, then |𝑔(𝑥) − 𝐿2| < 𝜀2, also by Definition 1 of WR no. 74.   



 Let 𝜀1 > 0 and 𝜀2 > 0 be given and set 
𝜀

2
= max{𝜀1, 𝜀2}.  Hence, there exists 𝑁1 > 0 such 

that if 𝑥 > 𝑁1, then |𝑓(𝑥) − 𝐿1| < 𝜀1 ≤
𝜀

2
 , and there exists 𝑁2 > 0 such that if 𝑥 > 𝑁2, then 

|𝑔(𝑥) − 𝐿2| < 𝜀2 ≤
𝜀

2
.  Set 𝑁 = max{𝑁1, 𝑁2}.   

 Suppose that 𝑥 > 𝑁.  Hence, 𝑥 > 𝑁1 and 𝑥 > 𝑁2.  So, |𝑓(𝑥) − 𝐿1| <
𝜀

2
 and  

|𝑔(𝑥) − 𝐿2| <
𝜀

2
.  Thus, |𝑓(𝑥) − 𝐿1| + |𝑔(𝑥) − 𝐿2| <

𝜀

2
+

𝜀

2
= 𝜀.  Hence,  

|[𝑓(𝑥) − 𝐿1] + [𝑔(𝑥) − 𝐿2]| < 𝜀, by the Triangle Inequality (Cf. WR no. 75).  So,  
|[𝑓(𝑥) + 𝑔(𝑥)] − [𝐿1 + 𝐿2]| < 𝜀.  Consequently, if 𝑥 > 𝑁, then  
|[𝑓(𝑥) + 𝑔(𝑥)] − [𝐿1 + 𝐿2]| < 𝜀. 

 Therefore, lim
𝑥→+∞

[𝑓(𝑥) + 𝑔(𝑥)] = 𝐿1 + 𝐿2, by Definition 1 of WR no. 74. 


 

 

Theorem 3:  If lim
𝑥→+∞

𝑓(𝑥) = 𝐿 then lim
𝑥→+∞

𝑐𝑓(𝑥) = 𝑐𝐿, for 𝑐 ∈ ℝ\{0}. 

 

Proof:  Suppose that lim
𝑥→+∞

𝑓(𝑥) = 𝐿.  Let 𝜀 > 0 and 𝑐 ∈ ℝ\{0} be given.  Hence, since 

lim
𝑥→+∞

𝑓(𝑥) = 𝐿, there exists 𝑁∗ > 0 such that if 𝑥 > 𝑁∗, then |𝑓(𝑥) − 𝐿| <
𝜀

|𝑐|
, by Definition 1 

of WR no. 74.  Set 𝑁 = 𝑁∗. 

 Suppose that 𝑥 > 𝑁.  Hence, 𝑥 > 𝑁∗.  So, |𝑓(𝑥) − 𝐿| <
𝜀

|𝑐|
.  Thus,  

|𝑐||𝑓(𝑥) − 𝐿| < |𝑐|
𝜀

|𝑐|
= 𝜀.  But |𝑐||𝑓(𝑥) − 𝐿| = |𝑐𝑓(𝑥) − 𝑐𝐿|.  Hence, |𝑐𝑓(𝑥) − 𝑐𝐿| < 𝜀, by 

substitution.  Consequently, if 𝑥 > 𝑁, then |𝑐𝑓(𝑥) − 𝑐𝐿|.   
 Therefore, lim

𝑥→+∞
𝑐𝑓(𝑥) = 𝑐𝐿, by Definition 1 of WR no. 74. 


 

 

Theorem 4:  If lim
𝑥→+∞

𝑓(𝑥) = 𝐿 then lim
𝑥→+∞

𝑐𝑓(𝑥) = 𝑐𝐿, for 𝑐 = 0. 

 

Proof:  Suppose that lim
𝑥→+∞

𝑓(𝑥) = 𝐿 and 𝑐 = 0.  Hence, lim
𝑥→+∞

𝑐𝑓(𝑥) = lim
𝑥→+∞

[0 ⋅ 𝑓(𝑥)] = 

= lim
𝑥→+∞

0 = 0 = 0 ⋅ 𝐿 = 𝑐𝐿, by Theorem 1. 


 

 

Theorem 5 (The Constant Multiple Rule):  

If lim
𝑥→+∞

𝑓(𝑥) = 𝐿 then lim
𝑥→+∞

𝑐𝑓(𝑥) = 𝑐𝐿, for 𝑐 ∈ ℝ. 

 

Proof:  By Theorems 3 and 4. 


 

 

 
 “Only he who never plays, never loses.” 

Written and published every Saturday by Richard Shedenhelm    WeeklyRigor@gmail.com 


