The 䀦rekly Tingar

Introduction to the Constant, Constant Multiple, Sum, and Difference Rules for Horizontal Asymptotes of Rational Functions

INTRODUCTION

This article will lay out the proofs of the basic rules a student needs to algebraically determine the horizontal asymptote of a rational function. After the proofs, three solved problems will illustrate the use of the rules to address the three types of rational functions.

Theorem 1 (The Constant Rule): $\quad \lim _{x \rightarrow+\infty} c=c$ for any constant $c \in \mathbb{R}$.
Preliminary Remark: In words: The limit of a constant is equal to the constant.
Proof: Let $\varepsilon>0$ be given and set $N=\varepsilon$. Hence, $N>0$.
Suppose that $x>N$. Since $\varepsilon>0,0<\varepsilon$. $|c-c|=0$ for any constant $c \in \mathbb{R}$. Hence, $|c-c|<\varepsilon$, by substitution. Consequently, if $x>N$, then $|c-c|<\varepsilon$.

Therefore, $\lim _{x \rightarrow+\infty} c=c$ for any constant $c \in \mathbb{R}$, by Definition 1 of $W R$ no. 74 .

Theorem 2 (The Sum Rule): If $\lim _{x \rightarrow+\infty} f(x)=L_{1}$ and $\lim _{x \rightarrow+\infty} g(x)=L_{2}$, then $\lim _{x \rightarrow+\infty}[f(x)+g(x)]=L_{1}+L_{2}$.

Preliminary Remark: In words: The limit of a sum is the sum of the limits.
Proof: Suppose that $\lim _{x \rightarrow+\infty} f(x)=L_{1}$ and $\lim _{x \rightarrow+\infty} g(x)=L_{2}$. Hence, since
$\lim _{x \rightarrow+\infty} f(x)=L_{1}$, given any number $\varepsilon_{1}>0$, there corresponds a positive number N_{1} such that if $x>N_{1}$, then $\left|f(x)-L_{1}\right|<\varepsilon_{1}$, by Definition 1 of $W R$ no. 74. Furthermore, since $\lim _{x \rightarrow+\infty} g(x)=L_{2}$, given any number $\varepsilon_{2}>0$, there corresponds a positive number N_{2} such that if $x>N_{2}$, then $\left|g(x)-L_{2}\right|<\varepsilon_{2}$, also by Definition 1 of $W R$ no. 74 .

Let $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$ be given and set $\frac{\varepsilon}{2}=\max \left\{\varepsilon_{1}, \varepsilon_{2}\right\}$. Hence, there exists $N_{1}>0$ such that if $x>N_{1}$, then $\left|f(x)-L_{1}\right|<\varepsilon_{1} \leq \frac{\varepsilon}{2}$, and there exists $N_{2}>0$ such that if $x>N_{2}$, then $\left|g(x)-L_{2}\right|<\varepsilon_{2} \leq \frac{\varepsilon}{2}$. Set $N=\max \left\{N_{1}, N_{2}\right\}$.

Suppose that $x>N$. Hence, $x>N_{1}$ and $x>N_{2}$. So, $\left|f(x)-L_{1}\right|<\frac{\varepsilon}{2}$ and $\left|g(x)-L_{2}\right|<\frac{\varepsilon}{2}$. Thus, $\left|f(x)-L_{1}\right|+\left|g(x)-L_{2}\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$. Hence, $\left|\left[f(x)-L_{1}\right]+\left[g(x)-L_{2}\right]\right|<\varepsilon$, by the Triangle Inequality (Cf. WR no. 75). So, $\left|[f(x)+g(x)]-\left[L_{1}+L_{2}\right]\right|<\varepsilon$. Consequently, if $x>N$, then $\left|[f(x)+g(x)]-\left[L_{1}+L_{2}\right]\right|<\varepsilon$.

Therefore, $\lim _{x \rightarrow+\infty}[f(x)+g(x)]=L_{1}+L_{2}$, by Definition 1 of $W R$ no. 74 .

Theorem 3: If $\lim _{x \rightarrow+\infty} f(x)=L$ then $\lim _{x \rightarrow+\infty} c f(x)=c L$, for $c \in \mathbb{R} \backslash\{0\}$.
Proof: Suppose that $\lim _{x \rightarrow+\infty} f(x)=L$. Let $\varepsilon>0$ and $c \in \mathbb{R} \backslash\{0\}$ be given. Hence, since $\lim _{x \rightarrow+\infty} f(x)=L$, there exists $N^{*}>0$ such that if $x>N^{*}$, then $|f(x)-L|<\frac{\varepsilon}{|c|}$, by Definition 1 of $W R$ no. 74. Set $N=N^{*}$.

Suppose that $x>N$. Hence, $x>N^{*}$. So, $|f(x)-L|<\frac{\varepsilon}{|c|}$. Thus, $|c||f(x)-L|<|c| \frac{\varepsilon}{|c|}=\varepsilon$. But $|c||f(x)-L|=|c f(x)-c L|$. Hence, $|c f(x)-c L|<\varepsilon$, by substitution. Consequently, if $x>N$, then $|c f(x)-c L|$.

Therefore, $\lim _{x \rightarrow+\infty} c f(x)=c L$, by Definition 1 of $W R$ no. 74 .

Theorem 4: If $\lim _{x \rightarrow+\infty} f(x)=L$ then $\lim _{x \rightarrow+\infty} c f(x)=c L$, for $c=0$.
Proof: Suppose that $\lim _{x \rightarrow+\infty} f(x)=L$ and $c=0$. Hence, $\lim _{x \rightarrow+\infty} c f(x)=\lim _{x \rightarrow+\infty}[0 \cdot f(x)]=$ $=\lim _{x \rightarrow+\infty} 0=0=0 \cdot L=c L$, by Theorem 1 .

Theorem 5 (The Constant Multiple Rule):

$$
\text { If } \lim _{x \rightarrow+\infty} f(x)=L \text { then } \lim _{x \rightarrow+\infty} c f(x)=c L \text {, for } c \in \mathbb{R}
$$

Proof: By Theorems 3 and 4.
"Only he who never plays, never loses."

