

No. 82 "A mathematician is a machine for turning coffee into theorems." January 16, 2016

An Essential Skill for Calculus Students: Factoring and Expanding

 (Part 2)The opposite process of factoring is expanding. Expanding is the process of multiplying out a factored expression into an equivalent series of terms. For example, $(x+6)(x-1)$ can be multiplied out by the "FOIL" method to $x^{2}-x+6 x-6$, which can be simplified to $x^{2}+5 x-6$. There are three additional expansion principles the calculus student should know: 2. Product of Binomial Conjugates; 3. Squared Binomials; 4. Cubed Binomials.
2. Product of Binomial Conjugates. This expansion method is the reverse of the factoring principle "Difference of Squares." Hence, in general, the pattern is

$$
(a+b)(a-b)=a^{2}-b^{2}
$$

I suggest the student automatize this pattern without going through the intermediate labor of using the "FOIL" method. In words, the pattern would be: Write down the square of the first term, a^{2}, and subtract from that the square of the second term, $a^{2}-b^{2}$.

Examples:

$$
\begin{gathered}
(x+1)(x-1)=x^{2}-1 \\
(3 x+5)(3 x-5)=9 x^{2}-25 \\
\left(4 e^{2 x}+2 e^{6 x}\right)\left(4 e^{2 x}-2 e^{6 x}\right)=16 e^{4 x}-4 e^{12 x} \\
((x+y)+z)((x+y)-z)=(x+y)^{2}-z^{2}
\end{gathered}
$$

3. Squared Binomials. This expansion method is the opposite of the factoring principle Perfect Square Trinomials. The two general patterns of this expansion technique can be stated as

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

or

$$
(a-b)^{2}=a^{2}-2 a b+b^{2}
$$

The student can write a squared binomial such as $(a+b)^{2}$ as a product of two binomials $(a+b)(a+b)$ and perform the "FOIL" method on the latter. However, I think a shorthand method is advisable in this case, since the squared binomial is a very common mathematical expression. For the first pattern, the shorthand method consists of taking the given squared binomial $(a+b)^{2}$ and writing out the square of the first term, a^{2}, adding it to double the product of the two terms, $a^{2}+2 a b$, and then adding to the latter the square of the last term, $a^{2}+2 a b+b^{2}$. The shorthand method for the second pattern is the same, except that one subtracts the double of the product of the two terms.

Examples:

$$
\begin{gathered}
(x+1)^{2}=x^{2}+2 x+1 \\
(x-3)^{2}=x^{2}-6 x+9 \\
\left(x^{3}+4\right)^{2}=x^{6}+8 x^{3}+16 \\
\left(3 e^{2 x}-e^{5 x}\right)^{2}=9 e^{4 x}-6 e^{7 x}+e^{10 x} \\
((x+y)+z)^{2}=(x+y)^{2}+2(x+y) z+z^{2}
\end{gathered}
$$

4. Cubed Binomials. There is a principle called the "binomial formula" to immediately expand expressions of the form $(a+b)^{3}$ or $(a-b)^{3}$. However, I never found memorizing the binomial formula to be worth the time. Expanding cubed binomials is a rarity and there is an easy optional method: "FOIL" followed by multiplying by ($a \pm b$). That is:

$$
\begin{gathered}
(a+b)^{3}=(a+b)^{2}(a+b)=\left(a^{2}+2 a b+b^{2}\right)(a+b)= \\
=a^{3}+2 a^{2} b+a b^{2}+a^{2} b+2 a b^{2}+b^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{gathered}
$$

and

$$
\begin{gathered}
(a-b)^{3}=(a-b)^{2}(a-b)=\left(a^{2}-2 a b+b^{2}\right)(a-b)= \\
=a^{3}-2 a^{2} b+a b^{2}-a^{2} b+2 a b^{2}-b^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}
\end{gathered}
$$

Summary Table of the Factoring and Expanding Methods

Factoring	Expanding
1. Greatest Common Factor	1. FOIL
2. Difference of Squares	2. Product of Binomial Conjugates
3. Sum/Difference of Cubes	3. Squared Binomials
4. Perfect Square Trinomials	4. Cubed Binomials
5. Completing the Square	

"Only he who never plays, never loses."

