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An Essential Skill for Calculus Students:  Factoring and Expanding 
(Part 2) 

 

 The opposite process of factoring is expanding.  Expanding is the process of multiplying 

out a factored expression into an equivalent series of terms.  For example, (𝑥 + 6)(𝑥 − 1) can be 

multiplied out by the “FOIL” method to 𝑥2 − 𝑥 + 6𝑥 − 6, which can be simplified to  

𝑥2 + 5𝑥 − 6.  There are three additional expansion principles the calculus student should know:  

2. Product of Binomial Conjugates; 3. Squared Binomials; 4. Cubed Binomials. 

 

 2.  Product of Binomial Conjugates.  This expansion method is the reverse of the 

factoring principle “Difference of Squares.”  Hence, in general, the pattern is 

 

(𝑎 + 𝑏)(𝑎 − 𝑏) = 𝑎2 − 𝑏2 
 

I suggest the student automatize this pattern without going through the intermediate labor of 

using the “FOIL” method.  In words, the pattern would be:  Write down the square of the first 

term, 𝑎2, and subtract from that the square of the second term, 

𝑎2 − 𝑏2. 

 

Examples: 

 

(𝑥 + 1)(𝑥 − 1) = 𝑥2 − 1 
 

(3𝑥 + 5)(3𝑥 − 5) = 9𝑥2 − 25 
 

(4𝑒2𝑥 + 2𝑒6𝑥)(4𝑒2𝑥 − 2𝑒6𝑥) = 16𝑒4𝑥 − 4𝑒12𝑥 
 

((𝑥 + 𝑦) + 𝑧)((𝑥 + 𝑦) − 𝑧) = (𝑥 + 𝑦)2 − 𝑧2 

 

 

 3.  Squared Binomials.  This expansion method is the opposite of the factoring principle 

Perfect Square Trinomials.  The two general patterns of this expansion technique can be stated as 

 

(𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 
or 

(𝑎 − 𝑏)2 = 𝑎2 − 2𝑎𝑏 + 𝑏2 
 



The student can write a squared binomial such as (𝑎 + 𝑏)2 as a product of two binomials 
(𝑎 + 𝑏)(𝑎 + 𝑏) and perform the “FOIL” method on the latter.  However, I think a shorthand 

method is advisable in this case, since the squared binomial is a very common mathematical 

expression.  For the first pattern, the shorthand method consists of taking the given squared 

binomial (𝑎 + 𝑏)2 and writing out the square of the first term, 𝑎2, adding it to double the product 

of the two terms, 𝑎2 + 2𝑎𝑏, and then adding to the latter the square of the last term, 

𝑎2 + 2𝑎𝑏 + 𝑏2.  The shorthand method for the second pattern is the same, except that one 

subtracts the double of the product of the two terms.   

 

Examples: 

 

(𝑥 + 1)2 = 𝑥2 + 2𝑥 + 1 
 

(𝑥 − 3)2 = 𝑥2 − 6𝑥 + 9 
 

(𝑥3 + 4)2 = 𝑥6 + 8𝑥3 + 16 

 

(3𝑒2𝑥 − 𝑒5𝑥)2 = 9𝑒4𝑥 − 6𝑒7𝑥 + 𝑒10𝑥 

 

((𝑥 + 𝑦) + 𝑧)
2
= (𝑥 + 𝑦)2 + 2(𝑥 + 𝑦)𝑧 + 𝑧2 

 

 

 4.  Cubed Binomials.  There is a principle called the “binomial formula” to immediately 

expand expressions of the form (𝑎 + 𝑏)3 or (𝑎 − 𝑏)3.  However, I never found memorizing the 

binomial formula to be worth the time.  Expanding cubed binomials is a rarity and there is an 

easy optional method:  “FOIL” followed by multiplying by (𝑎 ± 𝑏).  That is: 

 

(𝑎 + 𝑏)3 = (𝑎 + 𝑏)2(𝑎 + 𝑏) = (𝑎2 + 2𝑎𝑏 + 𝑏2)(𝑎 + 𝑏) = 

= 𝑎3 + 2𝑎2𝑏 + 𝑎𝑏2 + 𝑎2𝑏 + 2𝑎𝑏2 + 𝑏3 = 𝑎3 + 3𝑎2𝑏 + 3𝑎𝑏2 + 𝑏3 
and 

(𝑎 − 𝑏)3 = (𝑎 − 𝑏)2(𝑎 − 𝑏) = (𝑎2 − 2𝑎𝑏 + 𝑏2)(𝑎 − 𝑏) = 

= 𝑎3 − 2𝑎2𝑏 + 𝑎𝑏2 − 𝑎2𝑏 + 2𝑎𝑏2 − 𝑏3 = 𝑎3 − 3𝑎2𝑏 + 3𝑎𝑏2 − 𝑏3 
 

 

Summary Table of the Factoring and Expanding Methods 

Factoring Expanding 

1.  Greatest Common Factor 1.  FOIL 

2.  Difference of Squares 2.  Product of Binomial Conjugates 

3.  Sum/Difference of Cubes 3.  Squared Binomials 

4.  Perfect Square Trinomials 4.  Cubed Binomials 

5.  Completing the Square  

 

 

 
 “Only he who never plays, never loses.” 
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