

Elementary Introduction to the Exponent Rules for Positive Integer Exponents

(Part 1)

In the following, let w, x, y, and z stand for any real numbers. Let k, m, n, p, and q stand for any positive integers.

Definition 1: x^{n} means $x \cdot x \cdots x$ with n factors.

Remark: For example, $x^{3}=x x x$. The " x " is called the base. The superscript " n " is called the exponent, which denotes the number of factors. When there is no exponent, we mean that the exponent equals 1 . We say that x^{n} is the nth power of x. We term x^{2} the square of x, and x^{3} the cube of x.

Theorem 1: $x^{m} \cdot x^{n}=x^{m+n}$.
Proof: $x^{m} \cdot x^{n} \stackrel{\text { D1 }}{\stackrel{m}{=}} \frac{m \text { factors }}{(x \cdot x \cdots x)} \cdot \overbrace{(x \cdot x \cdots x)}^{n \text { factors }}=\overbrace{x \cdot x \cdots x}^{m+n \text { factors }} \stackrel{\text { D1 }}{=} x^{m+n}$.

Examples: $2^{3} \cdot 2^{4}=2^{3+4}=2^{7} . a^{1} \cdot a^{5}=a^{1+5}=a^{6}$.

Theorem 2: $\left(x^{m}\right)^{n}=x^{m n}$.

mn factors D1
$=\overparen{x \cdot x \cdots x} \xlongequal{\cong} x^{m n}$.
Examples: $\left(2^{3}\right)^{5}=2^{3 \cdot 5}=2^{15} .\left(a^{2}\right)^{4}=a^{2 \cdot 4}=a^{8}$.

Theorem 3: $(x y)^{n}=x^{n} y^{n}$.
Proof: $(x y)^{n} \stackrel{\text { D1 }}{\stackrel{n}{=}} \overbrace{(x y) \cdot(x y) \cdots(x y)}^{n \text { factors }}=\overbrace{(x \cdot x \cdots x)}^{n \text { factors }} \cdot \overbrace{(y \cdot y \cdots y)}^{n \text { factors }} \stackrel{\mathrm{D} 1}{=} x^{n} y^{n}$.

Examples: $(3 a)^{2}=3^{2} a^{2}=9 a^{2} .(x y)^{5}=x^{5} y^{5}$.

Theorem 4: $\left(x^{m} y^{n}\right)^{k}=x^{m k} y^{n k}$.
Proof: $\left(x^{m} y^{n}\right)^{k}=\left[\left(x^{m}\right)\left(y^{n}\right)\right]^{k} \stackrel{\text { T3 }}{\leftrightarrows}\left(x^{m}\right)^{k}\left(y^{n}\right)^{k} \stackrel{\text { T2 }}{\cong} x^{m k} y^{n k}$.

Examples: $\left(2 a^{3} b^{2}\right)^{3}=2^{3} a^{9} b^{6}=8 a^{9} b^{6} .\left(x^{2} y^{3} z^{4}\right)^{5}=x^{10} y^{15} z^{20}$.
"Only he who never plays, never loses."

