The meekly zignr

Mal-Rules in Algebra

INTRODUCTION

Delimiting and classifying the types of mathematical errors is difficult. However, some patterns in algebra-called "mal-rules"-are very common. By the use of counterexamples, we will see that these patterns are indeed errors.
1.

$$
(a+b)^{2} \neq a^{2}+b^{2}
$$

Counterexample: Let $a=1$ and $b=1$. $(1+1)^{2}=2^{2}=4.1^{2}+1^{2}=1+1=2$. But $4 \neq 2$.
2.

$$
\sqrt{a+b} \neq \sqrt{a}+\sqrt{b}
$$

Counterexample: Let $a=16$ and $b=9 . \sqrt{16+9}=\sqrt{25}=5 . \sqrt{16}+\sqrt{9}=4+3=7$. But $5 \neq 7$.
3.

$$
\frac{a+b}{a} \neq b .
$$

Counterexample: Let $a=2$ and $b=4 . \frac{2+4}{2}=\frac{6}{2}=3$. But $3 \neq 4$.
4.

$$
\frac{a+b}{a} \neq 1+b .
$$

Counterexample: Let $a=2$ and $b=4 . \frac{2+4}{2}=\frac{6}{2}=3.1+4=5$. But $3 \neq 5$.
5.

$$
\frac{a c+b}{a} \neq c+b .
$$

Counterexample: Let $a=2, b=2$, and $c=3 \cdot \frac{2 \cdot 3+2}{2}=\frac{6+2}{2}=\frac{8}{2}=4.3+2=5$. But $4 \neq 5$.
6.

$$
(-a)^{2} \neq-a^{2}
$$

Counterexample: Let $a=2 .(-2)^{2}=(-2)(-2)=4 .-2^{2}=-4$. But $4 \neq-4$.
7.

$$
a-(b-c) \neq a-b-c
$$

Counterexample: Let $a=3, b=2$, and $c=1.3-(2-1)=3-1=2.3-2-1=0$. But $2 \neq 0$.
8.

$$
(a b)^{2} \neq a b^{2}
$$

Counterexample: Let $a=2$ and $b=3$. $(2 \cdot 3)^{2}=6^{2}=36.2 \cdot 3^{2}=2 \cdot 9=18$. But $36 \neq 18$.
9.

$$
a(b+c) \neq a b+c .
$$

Counterexample: Let $a=3, b=2$, and $c=1.3(2+1)=3(3)=9.3 \cdot 2+1=6+1=7$. But $9 \neq 7$.
10.

$$
\frac{1}{a+b} \neq \frac{1}{a}+\frac{1}{b} .
$$

Counterexample: Let $a=2$ and $b=2 \cdot \frac{1}{2+2}=\frac{1}{4} \cdot \frac{1}{2}+\frac{1}{2}=1$. But $\frac{1}{4} \neq 1$.
11.

$$
a(b+c)^{2} \neq(a b+a c)^{2}
$$

Counterexample: Let $a=3, b=2$, and $c=1$. $3(2+1)^{2}=3(3)^{2}=3(9)=27$.
$(3 \cdot 2+3 \cdot 1)^{2}=(6+3)^{2}=9^{2}=81$. But $27 \neq 81$.
12.

$$
a(b c) \neq(a b)(a c)
$$

Counterexample: Let $a=3, b=2$, and $c=1$. $3(2 \cdot 1)=3(2)=6$. $(3 \cdot 2)(3 \cdot 1)=6 \cdot 3=$ $=18$. But $6 \neq 18$.
"Only he who never plays, never loses."

