The Weekly Rigor

No. 87

"A mathematician is a machine for turning coffee into theorems."

February 20, 2016

Mal-Rules in Algebra

INTRODUCTION

Delimiting and classifying the types of mathematical errors is difficult. However, some patterns in algebra—called "mal-rules"—are very common. By the use of counterexamples, we will see that these patterns are indeed errors.

1. $(a+b)^2 \neq a^2 + b^2$.

Counterexample: Let a = 1 and b = 1. $(1 + 1)^2 = 2^2 = 4$. $1^2 + 1^2 = 1 + 1 = 2$. But $4 \neq 2$.

2.
$$\sqrt{a+b} \neq \sqrt{a} + \sqrt{b}$$
.

Counterexample: Let a = 16 and b = 9. $\sqrt{16 + 9} = \sqrt{25} = 5$. $\sqrt{16} + \sqrt{9} = 4 + 3 = 7$. But $5 \neq 7$.

3.
$$\frac{a+b}{a} \neq b$$

Counterexample: Let a = 2 and b = 4. $\frac{2+4}{2} = \frac{6}{2} = 3$. But $3 \neq 4$.

4.
$$\frac{a+b}{a} \neq 1+b.$$

Counterexample: Let a = 2 and b = 4. $\frac{2+4}{2} = \frac{6}{2} = 3$. 1 + 4 = 5. But $3 \neq 5$.

5.
$$\frac{ac+b}{a} \neq c+b.$$

Counterexample: Let a = 2, b = 2, and c = 3. $\frac{2 \cdot 3 + 2}{2} = \frac{6 + 2}{2} = \frac{8}{2} = 4$. 3 + 2 = 5. But $4 \neq 5$.

$$(-a)^2 \neq -a^2$$

Counterexample: Let a = 2. $(-2)^2 = (-2)(-2) = 4$. $-2^2 = -4$. But $4 \neq -4$.

7.
$$a - (b - c) \neq a - b - c.$$

Counterexample: Let a = 3, b = 2, and c = 1. 3 - (2 - 1) = 3 - 1 = 2. 3 - 2 - 1 = 0. But $2 \neq 0$.

8.
$$(ab)^2 \neq ab^2$$
.

Counterexample: Let a = 2 and b = 3. $(2 \cdot 3)^2 = 6^2 = 36$. $2 \cdot 3^2 = 2 \cdot 9 = 18$. But $36 \neq 18$.

9.
$$a(b+c) \neq ab+c.$$

Counterexample: Let a = 3, b = 2, and c = 1. 3(2 + 1) = 3(3) = 9. $3 \cdot 2 + 1 = 6 + 1 = 7$. But $9 \neq 7$.

10.
$$\frac{1}{a+b} \neq \frac{1}{a} + \frac{1}{b}.$$

Counterexample: Let a = 2 and b = 2. $\frac{1}{2+2} = \frac{1}{4}$. $\frac{1}{2} + \frac{1}{2} = 1$. But $\frac{1}{4} \neq 1$.

11.
$$a(b+c)^2 \neq (ab+ac)^2$$

Counterexample: Let a = 3, b = 2, and c = 1. $3(2 + 1)^2 = 3(3)^2 = 3(9) = 27$. $(3 \cdot 2 + 3 \cdot 1)^{\overline{2}} = (6 + 3)^2 = 9^2 = 81$. But $27 \neq 81$.

12.
$$a(bc) \neq (ab)(ac)$$
.

Counterexample: Let a = 3, b = 2, and c = 1. $3(2 \cdot 1) = 3(2) = 6$. $(3 \cdot 2)(3 \cdot 1) = 6 \cdot 3 = 6$ = 18. But $6 \neq 18$.

"Only he who never plays, never loses,"

m

\mathbf{j} is a rest \mathbf{r} \mathbf{j} , is a rest \mathbf{r}	
Written and published every Saturday by Richard Shedenhelm	WeeklyRigor@gmail.com

6.