

No. 88 "A mathematician is a machine for turning coffee into theorems." February 27, 2016

An Essential Skill for Calculus Students: Algebraic Mal-Rules

Certain erroneous patterns crop up in algebra so often that they are given the special label "mal-rules."

The first type of pattern might be described as "false distribution." The first example of false distribution is where a student writes an equation such as

$$
(a+b)^{2}=a^{2}+b^{2}
$$

This equation cannot be valid, since an easy counterexample can be constructed. Let $a=1$ and $b=1$. Now substitute these values into the left side of the pattern: $(1+1)^{2}=2^{2}=4$. Furthermore, substitute the same values into the right side of the same pattern:
$1^{2}+1^{2}=1+1=2$. But $4 \neq 2$. Hence, the equation is not valid. The second example of false distribution is writing an equation of the form

$$
\sqrt{a+b}=\sqrt{a}+\sqrt{b} .
$$

Now this equation is also invalid, as shown by the following counterexample. Let $a=16$ and $b=9$. Substituting the values into the left side gives: $\sqrt{16+9}=\sqrt{25}=5$. A similar substitution produces: $\sqrt{16}+\sqrt{9}=4+3=7$. But $5 \neq 7$.

The second type of pattern might be termed "false cancellation." This common sort of error occurs when a student writes either

$$
\frac{a+b}{a}=b
$$

or

$$
\frac{a+b}{a}=1+b
$$

The first "equation" can be shown to be wrong by this counterexample: Let $a=2$ and $b=4$. $\frac{2+4}{2}=\frac{6}{2}=3$. But $3 \neq 4$. The second's refutation can be shown by this counterexample: Let $a=2$ and $b=4 . \frac{2+4}{2}=\frac{6}{2}=3.1+4=5$. But $3 \neq 5$. Matters are not at all helped if the student writes

$$
\frac{a c+b}{a}=c+b
$$

for the cancellation of the a 's was illicit. (Let $a=2, b=2$, and $c=3$.) The most common place where this latter false cancellation occurs is in the application of the quadratic formula. Many a student is tempted to do something like the following:

$$
x=\frac{4 \pm \sqrt{5}}{2}=2 \pm \sqrt{5}
$$

which is incorrect.
A third invalid pattern concerns a simple matter of mathematical punctuation, however young algebra students often overlook it, viz.,

$$
(-a)^{2}=-a^{2}
$$

Easy counterexample: Let $a=2$. $(-2)^{2}=(-2)(-2)=4 . ~-2^{2}=-4$. But $4 \neq-4$.
A final mal-rule is more often a temptation than an actual commission, but it is a dangerous temptation nonetheless. This pattern may be termed "false fraction splitting," and looks like:

$$
\frac{1}{a+b}=\frac{1}{a}+\frac{1}{b} .
$$

A counterexample for this error is: Let $a=2$ and $b=4 . \frac{1}{2+2}=\frac{1}{4} \cdot \frac{1}{2}+\frac{1}{2}=1$. But $\frac{1}{4} \neq 1$.

