

An Essential Skill for Calculus Students: Difference Quotients

(Part 1)

The difference quotient is a key component of the formal definition of the derivative. Most calculus textbooks state the general difference quotient as

$$
\frac{f(x+h)-f(x)}{h},
$$

where $f(x)$ is a function. For each function, there is a unique difference quotient. For example, the difference quotient of $f(x)=x^{3}$ is $\frac{(x-h)^{3}-x^{3}}{h}$; the difference quotient of $f(x)=\sin (x)$ is $\frac{\sin (x+h)-\sin (x)}{h}$.

The task of a difference quotient problem is to find a way to algebraically resolve the original quotient so that the h in the original denominator can be cancelled out. There are three main types of functions that present different and challenging algebraic steps to resolve:

1. Expansion Type, e.g., $f(x)=x^{2} ; 2$. Conjugate Type, e.g., $f(x)=\sqrt{x}$; 3. Fraction Type, e.g., $f(x)=\frac{1}{x}$. In essence, there are just three steps to solve these problems: Write out, substitute, and resolve.
2. Expansion Type. The simplest function of this type is $f(x)=x^{2}$. To resolve its difference quotient, perform the following steps:
a. Write out $f(x)$ and $f(x+h): f(x)=x^{2} \quad f(x+h)=(x+h)^{2}$.
b. Write out the general difference quotient and then substitute for $f(x)$ and $f(x+h)$ what you just wrote out above on the right sides of the equals sign:

$$
\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{2}-x^{2}}{h}=\cdots
$$

c. Resolve the difference quotient to be able to cancel out the denominator's h :

$$
\cdots=\frac{x^{2}+2 x h+h^{2}-x^{2}}{h}=\frac{2 x h-h^{2}}{h}=\frac{h(2 x-h)}{h}=2 x-h .
$$

Therefore: $\frac{f(x+h)-f(x)}{h}=2 x-h$.
2. Conjugate Type. The simplest function of this type is $f(x)=\sqrt{x}$. To resolve its difference quotient, perform the following steps:
a. Write out: $f(x)=\sqrt{x} \quad f(x+h)=\sqrt{x+h}$.
b. Substitute:

$$
\frac{f(x+h)-f(x)}{h}=\frac{\sqrt{x+h}-\sqrt{x}}{h}=\cdots
$$

c. Resolve:

$$
\cdots=\frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}=\frac{(x+h)-x}{h(\sqrt{x+h}+\sqrt{x})}=\frac{h}{h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{(\sqrt{x+h}+\sqrt{x})} .
$$

Therefore: $\frac{f(x+h)-f(x)}{h}=\frac{1}{\sqrt{x+h}+\sqrt{x}}$.
(Note: The h that now exists as a term inside the radical sign is okay-as you will find out early in calculus.)
3. Fraction Type. The simplest function of this type is $f(x)=\frac{1}{x}$. To resolve its difference quotient, perform the following steps:
a. Write out: $f(x)=\frac{1}{x} \quad f(x+h)=\frac{1}{x+h}$.
b. Substitute:

$$
\frac{f(x+h)-f(x)}{h}=\frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\cdots
$$

c. Resolve:

$$
\begin{aligned}
& \cdots=\frac{\frac{x}{x} \cdot \frac{1}{x+h}-\frac{1}{x} \cdot \frac{x+h}{x+h}}{h}=\frac{\frac{x}{x(x+h)}-\frac{(x+h)}{x(x+h)}}{h}=\frac{\frac{x-(x+h)}{x(x+h)}}{h}=\frac{\frac{x-x-h}{x(x+h)}}{h}=\frac{\frac{-h}{x(x+h)}}{h}= \\
& =\frac{\frac{-h}{x(x+h)}}{\frac{h}{1}}=\frac{-h}{x(x+h)} \cdot \frac{1}{h}=\frac{-1}{x(x+h)} .
\end{aligned}
$$

Therefore, $\frac{f(x+h)-f(x)}{h}=\frac{-1}{x(x+h)}$.
"Only he who never plays, never loses."
Written and published every Saturday by Richard Shedenhelm

