

An Essential Skill for Calculus Students: Difference Quotients

(Part 2)

A challenging combination of the aforementioned types is a mixture of types 2 and 3, e.g., the function $f(x)=\frac{1}{\sqrt{x}}$. To resolve its difference quotient, perform the following steps:
a. Write out: $f(x)=\frac{1}{\sqrt{x}} \quad f(x+h)=\frac{1}{\sqrt{x+h}}$.
b. Substitute:

$$
\frac{f(x+h)-f(x)}{h}=\frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}}{h}=\cdots
$$

c. Resolve:

$$
\begin{aligned}
& \cdots=\frac{\frac{\sqrt{x}}{\sqrt{x}} \cdot \frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}} \cdot \frac{\sqrt{x+h}}{\sqrt{x+h}}}{h}=\frac{\frac{\sqrt{x}}{\sqrt{x} \sqrt{x+h}}-\frac{\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}}{h}=\frac{\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}}{h}= \\
& =\frac{\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}} \cdot \frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}}}{h}=\frac{\frac{x-(x+h)}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}}{h}=\frac{\frac{x-x-h}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}}{h}= \\
& =\frac{\frac{-h}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}}{h}=\frac{\frac{-h}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}}{\frac{h}{1}}=\frac{-h}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \cdot \frac{1}{h}= \\
& =\frac{-1}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} .
\end{aligned}
$$

Therefore: $\frac{f(x+h)-f(x)}{h}=\frac{-1}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}$.

A final challenging variation looks similar to a Conjugate Type. It is $f(x)=\sqrt[3]{x}$. However, to resolve it requires an appeal to the difference of cubes formula from algebra,

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

Here is a procedure for resolving this function's difference quotient, where $a=\sqrt[3]{x+h}$ and $b=\sqrt[3]{x}$.
a. Write out: $f(x)=\sqrt[3]{x} \quad f(x+h)=\sqrt[3]{x+h}$.
b. Substitute:

$$
\frac{f(x+h)-f(x)}{h}=\frac{\sqrt[3]{x+h}-\sqrt[3]{x}}{h}=\cdots
$$

c. Resolve:

$$
\begin{aligned}
& \cdots=\frac{\sqrt[3]{x+h}-\sqrt[3]{x}}{h} \cdot \frac{\sqrt[3]{(x+h)^{2}}+\sqrt[3]{x+h} \sqrt[3]{x}+\sqrt[3]{x^{2}}}{\sqrt[3]{(x+h)^{2}}+\sqrt[3]{x+h} \sqrt[3]{x}+\sqrt[3]{x^{2}}}= \\
& =\frac{\sqrt[3]{(x+h)^{3}}+\sqrt[3]{(x+h)^{2}} \sqrt[3]{x}+\sqrt[3]{x+h} \sqrt[3]{x^{2}}-\sqrt[3]{(x+h)^{2}} \sqrt[3]{x}-\sqrt[3]{x+h} \sqrt[3]{x^{2}}-\sqrt[3]{x^{3}}}{h\left(\sqrt[3]{(x+h)^{2}}+\sqrt[3]{x+h} \sqrt[3]{x}+\sqrt[3]{x^{2}}\right)}= \\
& =\frac{(x+h)+\sqrt[3]{(x+h)^{2}} \sqrt[3]{x}-\sqrt[3]{(x+h)^{2}} \sqrt[3]{x}+\sqrt[3]{x+h} \sqrt[3]{x^{2}}-\sqrt[3]{x+h} \sqrt[3]{x^{2}}-x}{h\left(\sqrt[3]{(x+h)^{2}}+\sqrt[3]{x+h} \sqrt[3]{x}+\sqrt[3]{x^{2}}\right)}= \\
& =\frac{x+h-x}{h\left(\sqrt[3]{(x+h)^{2}}+\sqrt[3]{x+h} \sqrt[3]{x}+\sqrt[3]{x^{2}}\right)}=\frac{h}{h\left(\sqrt[3]{(x+h)^{2}}+\sqrt[3]{x+h} \sqrt[3]{x}+\sqrt[3]{x^{2}}\right)}= \\
& =\frac{1}{\sqrt[3]{(x+h)^{2}}+\sqrt[3]{x+h} \sqrt[3]{x}+\sqrt[3]{x^{2}}} .
\end{aligned}
$$

Therefore: $\frac{f(x+h)-f(x)}{h}=\frac{1}{\sqrt[3]{(x+h)^{2}}+\sqrt[3]{x+h} \sqrt[3]{x}+\sqrt[3]{x^{2}}}$.
"Only he who never plays, never loses."

