

No. 92
 "A mathematician is a machine for turning coffee into theorems."
 An Essential Skill for Calculus Students: Graphs

March 26, 2016

There are six basic graphs that are worth memorizing for calculus:

$$
y=x^{2}
$$

$$
y=e^{x}
$$

$y=x^{3}$

$y=\ln (x)$

$y=\sqrt{x}$

With the graphs memorized, the student can answer questions about the domain and range of the graphed functions. For example, by inspecting the graph for $y=e^{x}$, one can go left to right and conclude that the domain includes all x values, which in interval notation would be expressed $(-\infty, \infty)$. Furthermore, by tracking from the bottom up, one can also determine the range to be all y values greater than 0 , i.e., $(0, \infty)$. A further virtue of memorizing the graph for $y=e^{x}$ is that one can see that as x goes off to the left in the negative direction, the function's y-values approach ever closer to 0 . That is, e^{x} has a horizontal asymptote $y=0$.

A second value of memorizing these graphs is that more involved functions such as $y=x^{3}+3 x^{2}+5 x+10$ follow the pattern of the basic graph $y=x^{3}$ with large values of x (whether positive or negative). The reason for this is that the leading term of the complex function-in this case x^{3}-tends to predominate in influence as the absolute value of x grows very large.

A final value of committing these graphs to memory is that many other graphs amount to a set of shiftings and/or reflections of the basic graphs. For example, the graph of $y=(x-3)^{2}$ can be thought of as the graph of the basic $y=x^{2}$ moved to the right three units:

$$
y=x^{2}
$$

In a different case, the graph of $y=|x|+4$ can be regarded as the basic graph of $y=|x|$ moved up four units:

$y=|x|$

$y=|x|+4$
"Only he who never plays, never loses."

