

No. 95 "A mathematician is a machine for turning coffee into theorems." April 16, 2016

An Essential Skill for Calculus Students: Plane Geometry

(Part 2)
3. The two reference triangles are the $45^{\circ}-45^{\circ}-90^{\circ}$ and $30^{\circ}-60^{\circ}-90^{\circ}$ triangles. These triangles are some of the most important tools in mathematics, having applications in geometry, trigonometry, calculus, and word problems.

The best way to construct the $45^{\circ}-45^{\circ}-90^{\circ}$ reference triangle is to let the legs equal 1 and (by the Pythagorean Theorem) derive the hypotenuse to equal $\sqrt{2}$.

This first reference triangle is relatively easy to construct, and students almost always do so correctly. However, the second reference triangle $-30^{\circ}-60^{\circ}-90^{\circ}-$ is more prone to error.

To construct a correct $30^{\circ}-60^{\circ}-90^{\circ}$ reference triangle, do the following steps:

1. Draw an equilateral triangle with side lengths 2 . Label the fact that all the angles are 60°.

2. Drop down a perpendicular bisector from the top angle to the bottom side.

3. Focus on the left right triangle. Label the fact that the shorter leg is 1 and the top angle is 30°.

4. Use the Pythagorean Theorem to find the longer leg's length:

$$
1^{2}+b^{2}=2^{2} \Rightarrow b^{2}=4-1 \quad \Rightarrow \quad b=\sqrt{3}
$$

Note the fact that the hypotenuse is double the length of the shorter leg. Note further that the longer leg is $\sqrt{3}$ times the length of the shorter leg.
3. Drawing geometric figures. Drawing reasonable looking three-dimensional figures helps us to solve application problems.

Drawing a sphere comes down to drawing a circle with a horizontal oval inside:

"Only he who never plays, never loses."
Written and published every Saturday by Richard Shedenhelm

