

An Essential Skill for Calculus Students: Trigonometry

(Part 1)

The needed trigonometric knowledge a successful calculus student must have falls into five categories: 1. The basis of the trigonometric functions on similar right triangles; 2. The domain versus range of trigonometric functions with respect to similar right triangles and the unit circle; 3. Needed trigonometric identities; 4. Radian measure; 5. Unit circle measurements.

1. Similar right triangles. Consider two similar right triangles.

The angle θ is the same for both triangles. In the left triangle, the leg opposite to θ has length 3 and the leg adjacent to θ has length 4 . Hence, the ratio of opposite over adjacent equals $\frac{3}{4}$. Notice that in the case of the triangle on the right the ratio of opposite leg to θ over the adjacent leg to θ equals $\frac{6}{8}=\frac{3}{4}$. Pick any other similar triangles to these first two and the same ratio of $\frac{3}{4}$ appears for the leg opposite to θ divided by leg adjacent to θ. For brevity, let us abbreviate the ratio as $\frac{\mathrm{OPP}}{\mathrm{ADJ}}$. The ratio $\frac{\mathrm{OPP}}{\mathrm{ADJ}}$ is called "tangent." That is, the mathematical tangent of $\theta=\frac{\mathrm{OPP}}{\mathrm{ADJ}}$, with the shorthand $\tan (\theta)=\frac{\mathrm{OPP}}{\mathrm{ADJ}}$. Note carefully that the tangent of angle θ is the ratio of the opposite leg divided by the adjacent leg.

Furthermore, in all the above triangles, the ratio of the leg opposite θ divided by the hypotenuse equals $\frac{3}{5}$, viz., $\frac{\mathrm{OPP}}{\mathrm{HYP}}=\frac{3}{5}$. The trigonometric function that specifies the ratio $\frac{\mathrm{OPP}}{\mathrm{HYP}}$ relative to θ is called "sine." More briefly, $\sin (\theta)=\frac{\mathrm{OPP}}{\mathrm{HYP}}$. Lastly, "cosine" is defined as $\cos (\theta)=\frac{\mathrm{ADJ}}{\mathrm{HYP}}$.

It is crucial to remember that sine, cosine, and tangent are defined relative to an angle. For example, in the following triangle

$\sin (\theta)=\frac{3}{5}$, but $\sin (\phi)=\frac{4}{5} ; \tan (\theta)=\frac{3}{4}$, but $\tan (\phi)=\frac{4}{3}$. Note however that $\cos (\theta)=\frac{4}{5}=\sin (\phi)$. That is, the cosine of θ is equal to the sine of ϕ. But $\theta+\phi=90^{\circ}$, that is, θ and ϕ are complementary angles. Hence, "cosine" is short for "complementary angle's sine."
2. Domain and range. When dealing with right triangles, the domain of the sine, cosine, and tangent functions consists of acute angles. The range of the same functions consists of ratios of side lengths. For example, in the following triangle:

we have

When the trigonometric functions are applied to the unit circle, the domain is expanded to include all real numbers and the range is the interval $[-1,1]$.
"Only he who never plays, never loses."

