The Weekly Rigor

No. 97

"A mathematician is a machine for turning coffee into theorems."

April 30, 2016

An Essential Skill for Calculus Students: Trigonometry (Part 1)

The needed trigonometric knowledge a successful calculus student must have falls into five categories: 1. The basis of the trigonometric functions on similar right triangles; 2. The domain versus range of trigonometric functions with respect to similar right triangles and the unit circle; 3. Needed trigonometric identities; 4. Radian measure; 5. Unit circle measurements.

1. Similar right triangles. Consider two similar right triangles.

The angle θ is the same for both triangles. In the left triangle, the leg opposite to θ has length 3 and the leg adjacent to θ has length 4. Hence, the ratio of opposite over adjacent equals $\frac{3}{4}$. Notice that in the case of the triangle on the right the ratio of opposite leg to θ over the adjacent leg to θ equals $\frac{6}{8} = \frac{3}{4}$. Pick any other similar triangles to these first two and the same ratio of $\frac{3}{4}$ appears for the leg opposite to θ divided by leg adjacent to θ . For brevity, let us abbreviate the ratio as $\frac{OPP}{ADJ}$. The ratio $\frac{OPP}{ADJ}$ is called "tangent." That is, the mathematical tangent of $\theta = \frac{OPP}{ADJ}$, with the shorthand $\tan(\theta) = \frac{OPP}{ADJ}$. Note carefully that the tangent of angle θ is the ratio of the opposite leg divided by the adjacent leg.

Furthermore, in all the above triangles, the ratio of the leg opposite θ divided by the hypotenuse equals $\frac{3}{5}$, viz., $\frac{OPP}{HYP} = \frac{3}{5}$. The trigonometric function that specifies the ratio $\frac{OPP}{HYP}$ relative to θ is called "sine." More briefly, $\sin(\theta) = \frac{OPP}{HYP}$. Lastly, "cosine" is defined as $\cos(\theta) = \frac{ADJ}{HYP}$.

It is crucial to remember that sine, cosine, and tangent are defined *relative to an angle*. For example, in the following triangle

 $\sin(\theta) = \frac{3}{5}$, but $\sin(\phi) = \frac{4}{5}$; $\tan(\theta) = \frac{3}{4}$, but $\tan(\phi) = \frac{4}{3}$. Note however that $\cos(\theta) = \frac{4}{5} = \sin(\phi)$. That is, the *cosine* of θ is equal to the sine of ϕ . But $\theta + \phi = 90^{\circ}$, that is, θ and ϕ are *complementary* angles. Hence, "cosine" is short for "complementary angle's sine."

2. Domain and range. When dealing with right triangles, the domain of the sine, cosine, and tangent functions consists of *acute angles*. The range of the same functions consists of ratios of side lengths. For example, in the following triangle:

When the trigonometric functions are applied to the unit circle, the domain is expanded to

include all real numbers and the range is the interval [-1, 1].

"Only he who never plays, never loses."

Written and published every Saturday by Richard Shedenhelm	WeeklyRigor@gmail.com

we have