

An Essential Skill for Calculus Students: Trigonometry

(Part 3)

The central angle's radian measure here is three.

To generalize: The radian measure of a central angle subtended by an arc is the number of radii included in the arc. Or: The radian measure of a central angle is the number of radii included in the arc intercepted by that angle. Symbolically, for arc length s and radius r, the radian measure of central angle θ is defined by

$$
\theta=\frac{s}{r}
$$

For example, for an arc of length eight that subtends angle θ in a circle of radius five means that θ measures $\frac{8}{5}$ radians.

Now consider the case where the arc length involved is the entire circumference C of the circle, viz.,

$$
\theta=\frac{s}{r}=\frac{C}{r}=\frac{2 \pi r}{r}=2 \pi .
$$

Hence the radian measure of a central angle that involves a complete rotation equals 2π radians. So, $360^{\circ}=2 \pi$ radians. (In calculus, if an angle does not have the degree mark "o ", then mathematicians assume that the angle is measured in radians. Thus, we may write simply $360^{\circ}=2 \pi$.)

The fact that $360^{\circ}=2 \pi$ implies that $180^{\circ}=\pi$ allows us to state that $\frac{180^{\circ}}{180}=1^{\circ}=\frac{\pi}{180}$, i.e., one degree equals $\frac{\pi}{180}$ radians. This equation gives us a way to convert from degrees to radians. For example, since $1^{\circ}=\frac{\pi}{180}, 30^{\circ}=\frac{30 \pi}{180}=\frac{\pi}{6}$. Furthermore, since $180^{\circ}=\pi$, we can deduce that $\frac{180^{\circ}}{\pi}=\frac{\pi}{\pi}=1$, i.e., one radian equals $\frac{180}{\pi}$ degrees. This latter equation will let us convert from radians to degrees, e.g., since $\frac{180^{\circ}}{\pi}=1, \frac{180^{\circ}}{\pi} \cdot \frac{\pi}{3}=60^{\circ}=\frac{\pi}{3}$.
5. Unit circle. Many a high school student is forced to memorize the $x y$ coordinates on the unit circle. An easier way to compute these values (and more) is by the use of "reference angles."

Let θ be an angle in standard position that is not a multiple of 90°. Then the reference angle for angle θ placed in standard position is the angle θ^{\prime}, which is the positive acute angle formed by the terminal side of θ and the horizontal axis. Examples:

(Important note: Reference angles never "come out" of the vertical axis.) A concrete example is the following: the reference angle of a 120° angle is 60°.

The reference angle of an angle of $\frac{11 \pi}{6}$ is $\frac{\pi}{6}$:

"Only he who never plays, never loses."

