

The Sum of the Cubes of Any Three Consecutive Integers is Divisible by 9

INTRODUCTION

We prove the claim in this article by means of some basic principles of modular arithmetic. We use modular arithmetic every time we use a 12 -hour clock, where the numbers "wrap around" upon reaching 12-that number being the "modulus." Below we will see a way to use modulo 9 to quickly prove that, for example, $44^{3}+45^{3}+46^{3}$ is divisible by 9 .

Definition 1:
 $$
a \mid b
$$

if and only if $a \neq 0$ and there exists an integer c such that

$$
a c=b .
$$

For " $a \mid b, " b$ is said to be divisible by a, b is a multiple of a, a divides b, a goes into b, or a is a factor of b.

If $a \neq 0$ and b is not divisible by a, then we write

$$
a \nmid b .
$$

Examples: $2|6,4 \nmid 6,3 \nmid 4,2|-4,5|0,1| 0,3 \mid 3$.

Definition 2: We say that a and b are congruent modulo n if and only if

$$
n \mid(a-b)
$$

We denote this relationship as

$$
a \equiv b(\bmod n)
$$

and read these symbols as " a is congruent to b modulo n."

Examples: $9 \equiv 3(\bmod 2)$, since $2 \mid 6$ and hence $2 \mid(9-3) .0 \equiv-4(\bmod 2)$, since $2 \mid-4$ and hence $2 \mid(0-4) .4 \equiv 4(\bmod 5)$, since $5 \mid 0$ and hence $5 \mid(4-4)$.

Theorem 1:

$$
9^{3} \equiv 0^{3}(\bmod 9)
$$

Proof: $9.9^{2}=9^{3}$. Hence, $9 \mid 9^{3}$, i.e., $9 \mid\left(9^{3}-0\right)$, by Definition 1. Therefore, $9^{3} \equiv 0 \equiv 0^{3}(\bmod 9)$, by Definition 2.

Theorem 2: $\quad 10 \equiv 1^{3}(\bmod 9)$
Proof: $9 \cdot 111=999$. Hence, $9 \mid 999$, i.e., $9 \mid(1000-1)$, by Definition 1. So, $9 \mid\left(10^{3}-1\right)$. Therefore, $10^{3} \equiv 1 \equiv 1^{3}(\bmod 9)$, by Definition 2.

Theorem 3: The sum of the cubes of any three consecutive integers is divisible by 9 .
Preliminary Remark: This generalization can be suggested by examples such as the following: $(-1)^{3}+0^{3}+1^{3}=0,0^{3}+1^{3}+2^{3}=9,1^{3}+2^{3}+3^{3}=36, \ldots$

Proof: Let $n, n+1, n+2$ be three consecutive integers. $n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible by 9 if and only if $9 \mid\left[n^{3}+(n+1)^{3}+(n+2)^{3}\right]$, by Definition 1. But $9 \mid\left\{\left[n^{3}+(n+1)^{3}+(n+2)^{3}\right]-0\right\}$ if and only if $n^{3}+(n+1)^{3}+(n+2)^{3} \equiv 0(\bmod 9)$, for $n=0,1, \ldots, 8$ by Definition 2. Now,

$$
\begin{gathered}
0^{3}+1^{3}+2^{3} \equiv 9 \equiv 0(\bmod 9) \\
1^{3}+2^{3}+3^{3} \equiv 36 \equiv 0(\bmod 9) \\
2^{3}+3^{3}+4^{3} \equiv 99 \equiv 0(\bmod 9) \\
3^{3}+4^{3}+5^{3} \equiv 216 \equiv 0(\bmod 9) \\
4^{3}+5^{3}+6^{3} \equiv 405 \equiv 0(\bmod 9) \\
5^{3}+6^{3}+7^{3} \equiv 684 \equiv 0(\bmod 9) \\
6^{3}+7^{3}+8^{3} \equiv 1071 \equiv 0(\bmod 9) \\
7^{3}+8^{3}+9^{3} \stackrel{\text { T1 }}{=} 7^{3}+8^{3}+0^{3} \equiv 855 \equiv 0(\bmod 9) \\
8^{3}+9^{3}+10^{3} \stackrel{\text { T1 }}{\equiv} 8^{3}+0^{3}+10^{3} \stackrel{\text { 奐 }}{=} 8^{3}+0^{3}+1^{3} \equiv 513 \equiv 0(\bmod 9)
\end{gathered}
$$

Therefore, $n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible by 9 .
"Only he who never plays, never loses."

