

SAT Math Test Problem Children: Complex Numbers

(Part 2)

The College Board presents problems involving complex numbers in three formats. Here is one example of each format:

1. For $i=\sqrt{-1}$, what is the sum $(8+4 i)+(-7+10 i)$?
2. Which of the following complex numbers is equivalent to $\frac{5-3 i}{10+4 i}$? (Note: $i=\sqrt{-1}$)
A) $\frac{5}{10}-\frac{3 i}{4}$
B) $\frac{5}{10}+\frac{3 i}{4}$
C) $\frac{19}{58}-\frac{25 i}{58}$
D) $\frac{19}{58}+\frac{25 i}{58}$
3.

$$
\frac{7-i}{4-3 i}
$$

If the expression above is rewritten in the form $a+b i$, where a and b are real numbers, what is the value of a ? (Note: $i=\sqrt{-1}$)

To solve the first problem, compute the sum by adding the real parts and the imaginary parts.

$$
\begin{aligned}
(8+4 i)+(-7+10 i) & =8-7+4 i+10 i \\
& =(8-7)+(4+10) i \\
& =1+14 i
\end{aligned}
$$

To solve the second problem, start by multiplying the numerator and denominator by the conjugate of the denominator.

$$
\begin{aligned}
\frac{5-3 i}{10+4 i} & =\frac{5-3 i}{10+4 i} \cdot \frac{10-4 i}{10-4 i} \\
& =\frac{(5-3 i)}{(10+4 i)} \cdot \frac{(10-4 i)}{(10-4 i)} \\
& =\frac{5 \cdot 10-5 \cdot 4 i-10 \cdot 3 i+3 \cdot 4 i^{2}}{10 \cdot 10-10 \cdot 4 i+10 \cdot 4 i-4 \cdot 4 i^{2}} \\
& =\frac{50-20 i-30 i+12 i^{2}}{100-40 i+40 i-16 i^{2}} \\
& =\frac{50-50 i+12 i^{2}}{100-16 i^{2}} \\
& =\frac{50-50 i+12(-1)}{100-16(-1)} \\
& =\frac{50-50 i-12}{100+16} \\
& =\frac{38-50 i}{116} \\
& =\frac{38}{116}-\frac{50 i}{116} \\
& =\frac{19}{58}-\frac{25 i}{58}
\end{aligned}
$$

Solving the third problem is very similar to the second problem. The only difference is that the final answer only specifies the real part of the complex number.

$$
\begin{aligned}
\frac{7-i}{4-3 i} & =\frac{(7-i)}{(4-3 i)} \cdot \frac{(4+3 i)}{(4+3 i)} \\
& =\frac{28+17 i-3 i^{2}}{16-9 i^{2}} \\
& =\frac{31-17 i}{25} \\
& =\frac{31}{25}-\frac{17 i}{25}
\end{aligned}
$$

The real part being the number $\frac{31}{25}$.
"Only he who never plays, never loses."

