The Weekly Rigor

No. 104

"A mathematician is a machine for turning coffee into theorems."

June 18, 2016

SAT Math Test Problem Children: Complex Numbers

(Part 3)

PROBLEMS

- 1. For $i = \sqrt{-1}$, what is the sum (2 + 3i) + (4 + 5i)?
- 2. For $i = \sqrt{-1}$, what is the sum (5 + 2i) + (7 + 6i)?
- 3. For $i = \sqrt{-1}$, what is the sum (4 + i) + (2 + 10i)?
- 4. For $i = \sqrt{-1}$, what is the sum (6 + 4i) + (3 + i)?
- 5. For $i = \sqrt{-1}$, what is the sum (7 + 5i) + (-3 + 10i)?
- 6. For $i = \sqrt{-1}$, what is the sum (8 + 3i) + (-6 + i)?
- 7. For $i = \sqrt{-1}$, what is the sum (6 + 4i) + (-7 + 9i)?
- 8. For $i = \sqrt{-1}$, what is the sum (-4 + 4i) + (3 + 7i)?
- 9. For $i = \sqrt{-1}$, what is the sum (-5 + 4i) + (7 8i)?
- **10.** For $i = \sqrt{-1}$, what is the sum (-3 + 2i) + (4 10i)?

11. Which of the following complex numbers is equivalent to $\frac{1-3i}{6+2i}$? (Note: $i = \sqrt{-1}$)

- A) $\frac{i}{2}$
- B) $-\frac{i}{2}$
- C) $\frac{1}{6} \frac{3i}{2}$
- D) $\frac{1}{6} + \frac{3i}{2}$

12. Which of the following complex numbers is equivalent to $\frac{5-7i}{10+4i}$? (Note: $i = \sqrt{-1}$)

- A) $\frac{5}{10} + \frac{7i}{4}$ B) $\frac{5}{10} - \frac{7i}{4}$ C) $\frac{11}{58} - \frac{45i}{58}$
- D) $\frac{11}{58} + \frac{45i}{58}$

13. Which of the following complex numbers is equivalent to $\frac{9-5i}{6+8i}$? (Note: $i = \sqrt{-1}$)

A) $\frac{7}{50} - \frac{51i}{50}$ B) $\frac{7}{50} + \frac{51i}{50}$ C) $\frac{9}{6} - \frac{5i}{8}$ D) $\frac{9}{6} + \frac{5i}{8}$

14. Which of the following complex numbers is equivalent to $\frac{11-3i}{8+2i}$? (Note: $i = \sqrt{-1}$)

- A) $\frac{11}{8} \frac{3i}{2}$ B) $\frac{41}{34} + \frac{3i}{4}$
- 34 4
- C) $\frac{41}{34} \frac{23i}{34}$
- D) $\frac{11}{8} + \frac{3i}{2}$

"Only he who never plays, never loses."

Written and published every Saturday by Richard Shedenhelm

WeeklyRigor@gmail.com