The Weekly Rigor

No. 112

"A mathematician is a machine for turning coffee into theorems."

August 13, 2016

SAT Math Test Problem Children: Trigonometry

(Part 5)

ANSWERS

1. C	4. 0.4	7. C
2. 0.8	5. $\frac{1}{2}$	8. A
3. 0.6	6. $\frac{4}{5}$	9. C
	10. C	

SELECTED SOLUTIONS

1. To solve this problem, apply "SOHCAHTOA." Since $\frac{b}{a}$ is a ratio of the right triangle's two legs, the correct answer has to involve the tangent function. Hence, the correct answer can only be C or D. However, only answer C has the correct tangent function, since relative to angle A, the ratio of the opposite leg divided by the adjacent leg does indeed equal $\frac{b}{a}$.

2. This problem is a straightforward application of the complementary angle relationship. Angles x and y are the two complementary angles of the given right triangle. Hence, the sine of x° equals the cosine of y° . So, the cosine of y° has to equal 0.8.

5. This problem is a somewhat indirect application of the complementary angle relationship. The angle equal to $90^\circ - x^\circ$ *is* the complement of angle measuring x° . Hence, $\sin x^\circ = \cos(90^\circ - x^\circ)$. So, $\cos(90^\circ - x^\circ)$ has to equal $\frac{1}{2}$.

7. This problem is tricky. We are given two acute angles consisting of a° and b° such that $\sin(a^{\circ}) = \cos(b^{\circ})$. By the complementary angle relationship, $\sin(a^{\circ}) = \cos(90^{\circ} - a^{\circ})$. Hence, $b^{\circ} = 90^{\circ} - a^{\circ}$, by substitution. So, since a = 2k - 20 and b = 8k - 15, it follows that 8k - 15 = 90 - (2k - 20). Thus, 8k - 15 = 90 - 2k + 20, i.e., 10k = 125. Therefore, $k = \frac{125}{10} = 12.5$, answer C.

"Only he who never plays, never loses."

Written and published every Saturday by Richard Shedenhelm