SAT Math Test Problem Children: Trigonometry

(Part 5)

ANSWERS

1. C	4. 0.4	7. C
2. 0.8	5. $\frac{1}{2}$	8. A
3. 0.6	6. $\frac{4}{5}$	9. C
	$10 . \mathrm{C}$	

SELECTED SOLUTIONS

1. To solve this problem, apply "SOHCAHTOA." Since $\frac{b}{a}$ is a ratio of the right triangle's two legs, the correct answer has to involve the tangent function. Hence, the correct answer can only be C or D. However, only answer C has the correct tangent function, since relative to angle A, the ratio of the opposite leg divided by the adjacent leg does indeed equal $\frac{b}{a}$.
2. This problem is a straightforward application of the complementary angle relationship. Angles x and y are the two complementary angles of the given right triangle. Hence, the sine of x° equals the cosine of y°. So, the cosine of y° has to equal 0.8 .
3. This problem is a somewhat indirect application of the complementary angle relationship. The angle equal to $90^{\circ}-x^{\circ}$ is the complement of angle measuring x°. Hence, $\sin x^{\circ}=$ $\cos \left(90^{\circ}-x^{\circ}\right)$. So, $\cos \left(90^{\circ}-x^{\circ}\right)$ has to equal $\frac{1}{2}$.
4. This problem is tricky. We are given two acute angles consisting of a° and b° such that $\sin \left(a^{\circ}\right)=\cos \left(b^{\circ}\right)$. By the complementary angle relationship, $\sin \left(a^{\circ}\right)=\cos \left(90^{\circ}-a^{\circ}\right)$. Hence, $b^{\circ}=90^{\circ}-a^{\circ}$, by substitution. So, since $a=2 k-20$ and $b=8 k-15$, it follows that $8 k-15=90-(2 k-20)$. Thus, $8 k-15=90-2 k+20$, i.e., $10 k=125$. Therefore, $k=\frac{125}{10}=12.5$, answer C.
