

SAT Math Test Problem Children: Solving Quadratic Equations

(Part 2)
Now, down to the details:

1. Using the quadratic formula, with $a=2, b=8$, and $c=4$, we have
$x=\frac{-8 \pm \sqrt{8^{2}-4(2)(4)}}{2(2)}=\frac{-8 \pm \sqrt{64-32}}{4}=\frac{-8 \pm \sqrt{32}}{4}=\frac{-8 \pm \sqrt{16 \cdot 2}}{4}=\frac{-8 \pm \sqrt{4^{2} \cdot 2}}{4}=$ $=\frac{-8 \pm 4 \sqrt{2}}{4}=\frac{4(-2 \pm \sqrt{2})}{4}=-2 \pm \sqrt{2}$.

Therefore, the solutions are $x=-2+\sqrt{2}$ and $x=-2-\sqrt{2}$.
The biggest source of error in problems of this sort have to do with cancellation. For example, if we had solutions looking like $x=\frac{-8 \pm 5 \sqrt{2}}{4}$, we could not simplify the fraction to $-2 \pm 5 \sqrt{2}$, since there is not a common factor of 4 in both the terms of the numerator. Also note that the College Board always reduces radicals to lowest terms, e.g., $2 \sqrt{2}$, not $\sqrt{8}$.
2. Using the quadratic formula, with $a=1, b=3$, and $c=-4$, we have

$$
x=\frac{-3 \pm \sqrt{(-3)^{2}-4(1)(-4)}}{2(1)}=\frac{-3 \pm \sqrt{9+16}}{2}=\frac{-3 \pm \sqrt{25}}{2}=\frac{-3 \pm \sqrt{5^{2}}}{2}=\frac{-3 \pm 5}{2} .
$$

Therefore, the solutions are $x=\frac{-3+5}{2}=\frac{2}{2}=1$ and $x=\frac{-3-5}{2}=\frac{-8}{2}=-4$. However, with the constraint in the original problem that $x>0$, the only final solution is $x=1$.
3. Using the quadratic formula, with $a=3, b=-12$, and $c=6$, we have

$$
\begin{aligned}
& m=\frac{-(-12) \pm \sqrt{(-12)^{2}-4(3)(6)}}{2(3)}=\frac{12 \pm \sqrt{144-72}}{6}=\frac{12 \pm \sqrt{72}}{6}=\frac{12 \pm \sqrt{36 \cdot 2}}{6}= \\
= & \frac{12 \pm \sqrt{6^{2} \cdot 2}}{6}=\frac{12 \pm 6 \sqrt{2}}{6}=\frac{6(2 \pm \sqrt{2})}{6}=2 \pm \sqrt{2} .
\end{aligned}
$$

Therefore, the solutions are $m=2+\sqrt{2}$ and $m=2-\sqrt{2}$. However, the problem asks for the sum of the two solutions. Hence, the final answer is $(2+\sqrt{2})+(2-\sqrt{2})=$ $=2+\sqrt{2}+2-\sqrt{2}=4$.
4. Using the quadratic formula, with $a=2, b=13$, and $c=-15$, we have

$$
\begin{aligned}
& x=\frac{-13 \pm \sqrt{(-13)^{2}-4(2)(-15)}}{2(2)}=\frac{-13 \pm \sqrt{169+120}}{4}=\frac{-13 \pm \sqrt{289}}{4}=\frac{-13 \pm \sqrt{17^{2}}}{4}= \\
& =\frac{-13 \pm 17}{4}
\end{aligned}
$$

Therefore, the solutions are $x=\frac{-13+17}{4}=\frac{4}{4}=1$ and $x=\frac{-13-17}{4}=\frac{-30}{4}=\frac{-15}{2}$. Since $1>\frac{-15}{2}$, $r=1$ and $s=\frac{-15}{2}$. The problem asks for the positive difference of the two solutions, viz., $r-s$. Hence, the final answer is $1-\left(\frac{-15}{2}\right)=1+\frac{15}{2}=\frac{2}{2}+\frac{15}{2}=\frac{17}{2}$.
"Only he who never plays, never loses."

