© he 相rexly Tingar

SAT Math Test Problem Children: Solving Quadratic Equations

SELECTED SOLUTIONS

1. Using the quadratic formula, with $a=2, b=8$, and $c=2$, we have

$$
\begin{aligned}
& x=\frac{-8 \pm \sqrt{8^{2}-4(2)(2)}}{2(2)}=\frac{-8 \pm \sqrt{64-16}}{4}=\frac{-8 \pm \sqrt{48}}{4}=\frac{-8 \pm \sqrt{16 \cdot 3}}{4}=\frac{-8 \pm \sqrt{4^{2} \cdot 3}}{4}= \\
& =\frac{-8 \pm 4 \sqrt{3}}{4}=\frac{4(-2 \pm \sqrt{3})}{4}=-2 \pm \sqrt{3} .
\end{aligned}
$$

Therefore, the solutions are $x=-2+\sqrt{3}$ and $x=-2-\sqrt{3}$.

Alternative solution:

$2 x^{2}+8 x+2=0 \quad \Rightarrow \quad 2\left(x^{2}+4 x+1\right)=0 \quad \Rightarrow \quad x^{2}+4 x+1=0$.
Using the quadratic formula, with $a=1, b=4$, and $c=1$, we have

$$
\begin{aligned}
& x=\frac{-4 \pm \sqrt{4^{2}-4(1)(1)}}{2(1)}=\frac{-4 \pm \sqrt{16-4}}{2}=\frac{-4 \pm \sqrt{12}}{2}=\frac{-4 \pm \sqrt{4 \cdot 3}}{2}=\frac{-4 \pm \sqrt{2^{2} \cdot 3}}{2}= \\
= & \frac{-4 \pm 2 \sqrt{3}}{2}=\frac{2(-2 \pm \sqrt{3})}{2}=-2 \pm \sqrt{3} .
\end{aligned}
$$

Therefore, as before, the solutions are $x=-2+\sqrt{3}$ and $x=-2-\sqrt{3}$.
4. Using the quadratic formula, with $a=5, b=4$, and $c=-1$, we have

$$
x=\frac{-4 \pm \sqrt{(4)^{2}-4(5)(-1)}}{2(5)}=\frac{-4 \pm \sqrt{16+20}}{10}=\frac{-4 \pm \sqrt{36}}{10}=\frac{-4 \pm \sqrt{6^{2}}}{10}=\frac{-4 \pm 6}{10}
$$

Therefore, the solutions are $x=\frac{-4+6}{10}=\frac{2}{10}=\frac{1}{5}$ and $x=\frac{-4-6}{10}=\frac{-10}{10}=-1$. However, with the constraint in the original problem that $x>0$, the only final solution is $x=\frac{1}{5}$.
7. Using the quadratic formula, with $a=3, b=-12$, and $c=3$, we have

$$
\begin{aligned}
& m=\frac{-(-12) \pm \sqrt{(-12)^{2}-4(3)(3)}}{2(3)}=\frac{12 \pm \sqrt{144-36}}{6}=\frac{12 \pm \sqrt{108}}{6}=\frac{12 \pm \sqrt{36 \cdot 3}}{6}= \\
= & \frac{12 \pm \sqrt{6^{2} \cdot 3}}{6}=\frac{12 \pm 6 \sqrt{3}}{6}=\frac{6(2 \pm \sqrt{3})}{6}=2 \pm \sqrt{3} .
\end{aligned}
$$

Therefore, the solutions are $m=2+\sqrt{3}$ and $m=2-\sqrt{3}$. However, the problem asks for the sum of the two solutions. Hence, the final answer is $(2+\sqrt{3})+(2-\sqrt{3})=$ $=2+\sqrt{3}+2-\sqrt{3}=4$.

Alternative solution:

$3 m^{2}-12 m+3=0 \quad \Rightarrow \quad 3\left(m^{2}-4 m+1\right)=0 \quad \Rightarrow \quad m^{2}-4 m+1=0$.
Using the quadratic formula, with $a=1, b=-4$, and $c=1$, we have

$$
x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(1)}}{2(1)}=\frac{4 \pm \sqrt{16-4}}{2}=\frac{4 \pm \sqrt{12}}{2}=\frac{4 \pm \sqrt{4 \cdot 3}}{2}=\frac{4 \pm \sqrt{2^{2} \cdot 3}}{2}=
$$

$=\frac{4 \pm 2 \sqrt{3}}{2}=\frac{2(2 \pm \sqrt{3})}{2}=2 \pm \sqrt{3}$.
Therefore, as before, the initial solutions are $x=2+\sqrt{3}$ and $x=2-\sqrt{3}$.
"Only he who never plays, never loses."

