The Weekly Rigor

No. 128

"A mathematician is a machine for turning coffee into theorems."

December 3, 2016

SAT Math Test Problem Children: Geometry

(Part 2)

To solve the first problem, begin by drawing representative triangles.

Since the sides of triangle *DEF* are $\frac{1}{3}$ the length of the corresponding sides of triangle *ABC*, we can fill in the lengths of *EF* and *DF*:

The value of sin *F* is equal the ratio $\frac{DE}{DF}$. Hence, we need to use the Pythagorean Theorem to find the length of *DE*. $DE^2 + 4^2 = 5^2$. So, $DE^2 = 25 - 16 = 9$. Thus, DE = 3. Therefore, $\sin F = \frac{3}{5}$.

To solve the second problem, note that $\overline{AE} \parallel \overline{CD}$. Hence, $\angle C \cong \angle E$ and $\angle D \cong \angle A$. Furthermore, vertical angles $\angle CBD$ and $\angle EBA$ are also congruent. So, $\triangle CBD$ is similar to $\triangle EBA$. Thus, $\frac{CB}{6} = \frac{8}{12}$. Hence, $CB = \frac{6 \cdot 8}{12} = \frac{48}{12} = 4$. Therefore, CE = 4 + 8 = 12. To solve the third problem, first note that since *LM* and *MN* are tangent to the circle at points *L* and *N*, respectively, both $\angle MLO$ and $\angle MNO$ are right angles. Hence, $\angle MLO$, $\angle LMN$ and $\angle MNO$ add up to 90° + 60° + 90° = 240°. However, all the angles of quadrilateral *OLMN* sum up to a total of 360°. So, $\angle LON = 360^\circ - 240^\circ = 120^\circ$. Thus, since 120 is one third of 360, the length of minor arc \widehat{LN} is one third of the circle's circumference. Therefore, the arc's length is $\frac{93}{3} = 31$.

Solving the fourth problem, begin by noting that vertical angles y and u are congruent. Hence, x + y = y + w. So, x = w. But vertical angles w and z are congruent. Consequently, x = z (option I). Given the assumptions of this problem, equal angles y and u could both be 80° and both x and w could be, say, 40°. In that case, $y \neq w$ and $x \neq u$. Therefore, only option I *must* be true—choice B.

"Only he who never plays, never loses."

Written and published every Saturday by Richard Shedenhelm