The 相rekld Tingar

SAT Math Test Problem Children: Geometry

(Part 2)
To solve the first problem, begin by drawing representative triangles.

Since the sides of triangle $D E F$ are $\frac{1}{3}$ the length of the corresponding sides of triangle $A B C$, we can fill in the lengths of $E F$ and $D F$:

The value of $\sin F$ is equal the ratio $\frac{D E}{D F}$. Hence, we need to use the Pythagorean Theorem to find the length of $D E . D E^{2}+4^{2}=5^{2}$. So, $D E^{2}=25-16=9$. Thus, $D E=3$. Therefore, $\sin F=\frac{3}{5}$.

To solve the second problem, note that $\overline{A E} \| \overline{C D}$. Hence, $\angle C \cong \angle E$ and $\angle D \cong \angle A$. Furthermore, vertical angles $\angle C B D$ and $\angle E B A$ are also congruent. So, $\triangle C B D$ is similar to $\triangle E B A$. Thus, $\frac{C B}{6}=\frac{8}{12}$. Hence, $C B=\frac{6 \cdot 8}{12}=\frac{48}{12}=4$. Therefore, $C E=4+8=12$.

To solve the third problem, first note that since $L M$ and $M N$ are tangent to the circle at points L and N, respectively, both $\angle M L O$ and $\angle M N O$ are right angles. Hence, $\angle M L O, \angle L M N$ and $\angle M N O$ add up to $90^{\circ}+60^{\circ}+90^{\circ}=240^{\circ}$. However, all the angles of quadrilateral OLMN sum up to a total of 360°. So, $\angle L O N=360^{\circ}-240^{\circ}=120^{\circ}$. Thus, since 120 is one third of 360 , the length of minor arc $\widehat{L N}$ is one third of the circle's circumference. Therefore, the arc's length is $\frac{93}{3}=31$.

Solving the fourth problem, begin by noting that vertical angles y and u are congruent. Hence, $x+y=y+w$. So, $x=w$. But vertical angles w and z are congruent. Consequently, $x=z$ (option I). Given the assumptions of this problem, equal angles y and u could both be 80° and both x and w could be, say, 40°. In that case, $y \neq w$ and $x \neq u$. Therefore, only option I must be true-choice B.
"Only he who never plays, never loses."

