The 相rekld Tingar

SAT Math Test Problem Children: Randomized Problem Set 1

(Part 7)
22. To solve this problem, begin by drawing representative triangles.

Since the sides of triangle $D E F$ are $\frac{1}{3}$ the length of the corresponding sides of triangle $A B C$, we can fill in the lengths of $E F$ and $D F$:

The value of $\sin F$ is equal the ratio $\frac{D E}{D F}$. Hence, we need to use the Pythagorean Theorem to find the length of $D E . D E^{2}+3^{2}=5^{2}$. So, $D E^{2}=25-9=16$. Thus, $D E=4$. Therefore, $\sin F=\frac{4}{5}$.
24. First note that the problem states $b=c-\frac{1}{2}$. Hence, by substitution into the first equation,

$$
2 x+\left(c-\frac{1}{2}\right)=4 x-6
$$

So,

$$
c=2 x-6+\frac{1}{2}=2 x-\frac{12}{2}+\frac{1}{2}=2 x-\frac{11}{2} .
$$

Thus, by substitution into the second equation,

$$
2 y+\left(2 x-\frac{11}{2}\right)=4 y-6
$$

Hence,

$$
2 x=2 y-6+\frac{11}{2}=2 y-\frac{12}{2}+\frac{11}{2}=2 y-\frac{1}{2}
$$

So,

$$
x=y-\frac{1}{4}
$$

which is option D.
25.

$$
\begin{aligned}
\frac{1-3 i}{6+2 i} & =\frac{1-3 i}{6+2 i} \cdot \frac{6-2 i}{6-2 i} \\
& =\frac{(1-3 i)}{(6+2 i)} \cdot \frac{(6-2 i)}{(6-2 i)} \\
& =\frac{1 \cdot 6-1 \cdot 2 i-6 \cdot 3 i+3 \cdot 2 i^{2}}{6 \cdot 6-6 \cdot 2 i+6 \cdot 2 i-2 \cdot 2 i^{2}} \\
& =\frac{6-2 i-18 i+6 i^{2}}{36-12 i+12 i-4 i^{2}} \\
& =\frac{6-20 i+6 i^{2}}{36-4 i^{2}} \\
& =\frac{6-20 i+6(-1)}{36-4(-1)} \\
& =\frac{6-20 i-6}{36+4} \\
& =\frac{-20 i}{40} \\
& =-\frac{i}{2}
\end{aligned}
$$

which is option B.

