

SAT Math Test Problem Children: Randomized Problem Set 2

(Part 5)
29. If $g(x)=-x+2$ and $f(x)=g(x)+4$, what is $f(5)$?
30. If $\frac{x-1}{4}=k$ and $k=5$, what is the value of x ?

ANSWERS

$1 . \frac{13}{5}$	$7 . \mathrm{A}$	$13 .-5$ or 1	$19 . \mathrm{B}$	25.6
$2 . \mathrm{D}$	$8 .-2 \pm \sqrt{2}$	$14 . \frac{30}{7}$	$20 . \mathrm{C}$	26.8
$3 .\{4,5\}$	$9 . \frac{1}{3}$	$15 . \mathrm{C}$	$21 .-17$	$27 . \mathrm{C}$
4.0 .6	10.15	$16 . \frac{4}{5}$	$22.12+8 i$	$28 . \mathrm{D}$
$5 . \frac{26}{25}$	$11 . \frac{1}{3}$	$17 .-4,4$	$23 . \mathrm{D}$	29.1
6.441	12.0 .4	$18.8 x+7$	$24 . \frac{4}{5}$	30.21

SELECTED SOLUTIONS

20. Before using the quadratic formula, we need to arrange the terms of the equation in the standard order, in order to correctly identify the constants a, b, and c. Hence, we have

$$
x^{2}-\frac{k}{4} x-4 p=0
$$

We will make the problem easier to solve if we eliminate the fraction in the linear term. We can accomplish this by multiplying each term by 4 . So, we will have

$$
4 x^{2}-k x-16 p=0
$$

Now, using the quadratic formula, with $a=4, b=-k$, and $c=-16 p$, we have

$$
x=\frac{-(-k) \pm \sqrt{(-k)^{2}-4(4)(-16 p)}}{2(4)}=\frac{k \pm \sqrt{k^{2}+256 p}}{8}=\frac{k}{8} \pm \frac{\sqrt{k^{2}+256 p}}{8} .
$$

Therefore, the answer is option C.
28. In solving this problem, begin by noting that vertical angles y and u are congruent. Hence, since $x+y=u+w$, it follows that x and w are also congruent. Given the assumptions of this problem, equal angles y and u could both be 80° and both x and w could be, say, 40°. In that case, although $x=t, y \neq t$ (Hence, option I is out.). In a similar way, both options II and III fail to be true. Therefore, none of the options have to be true-choice D.
"Only he who never plays, never loses."

