The Weekly Rigor

No. 154

"A mathematician is a machine for turning coffee into theorems."

June 3, 2017

Three Main Properties of Set Inclusion

Property 1: Property 2: Property 3:	$A \subseteq A$ for every <i>A</i> . $A = B$ if and only if $A \subseteq B$ and $B \subseteq A$. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.	
Definition 1:	$A \subseteq B$ if and only if $(\forall x)(x \in A \longrightarrow x \in B)$.	
Definition 2:	$A = B$ if and only if $(\forall x)(x \in A \leftrightarrow x \in B)$.	

Theorem 1 (Property 1): $A \subseteq A$ for every *A*.

Proof: $(\forall x)(x \in A \rightarrow x \in A)$. Hence, $A \subseteq A$, by Definition 1.

Theorem 2: If A = B, then $A \subseteq B$ and $B \subseteq A$.

Proof: Suppose that A = B. $A \subseteq A$, by Theorem 1. Hence, $A \subseteq B$ and $B \subseteq A$, by substitutions of "*B*" for "*A*."

Theorem 3: If $A \subseteq B$ and $B \subseteq A$, then A = B.

Proof: Suppose that $A \subseteq B$ and $B \subseteq A$. Hence, $(\forall x)(x \in A \longrightarrow x \in B)$ and $(\forall x)(x \in B \longrightarrow x \in A)$, by Definition 1. So, $(\forall x)(x \in A \leftrightarrow x \in B)$. Thus, A = B, by Definition 2.

Theorem 4 (Property 2):

A = B if and only if $A \subseteq B$ and $B \subseteq A$.

Proof: By Theorems 2 and 3.

Theorem 5 (Property 3): If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof: Suppose that $A \subseteq B$ and $B \subseteq C$. Hence, $(\forall x)(x \in A \rightarrow x \in B)$ and $(\forall x)(x \in B \rightarrow x \in C)$, by Definition 1. So, $(\forall x)(x \in A \rightarrow x \in C)$. Therefore, $A \subseteq C$, by Definition 1.

"Only he who never plays, never loses."

Written and published every Saturday by Richard Shedenhelm