The meekly zignr

Seven Essential Properties of Absolute Value

(Part 1)

INTRODUCTION

The seven essential properties of the absolute value function are the following:
Property 1: For every real number $x,|x| \geq 0$.
Property 2: If x is any real number and a is a positive real number, then $|x|<a$ if and only if $-a<x<a$.
Property 3: If x and b are any real numbers and a is positive, then

$$
|x-b|<a \text { if and only if } b-a<x<b+a
$$

Property 4: If x is any real number and a is a positive real number, then
$|x|>a$ if and only if either $x>a$ or $x<-a$.
Property 5: If a and b are any real numbers, then $|a-b|=|b-a|$.
Property 6: If a and b are any real numbers, then $|a| \cdot|b|=|a \cdot b|$.
Property 7 (The Triangle Inequality): If a and b are any real numbers, then

$$
|a+b| \leq|a|+|b|
$$

Examples of Property 1 include the following:

$$
|3|=3 \quad|-3|=3 \quad|0|=0
$$

Examples of Property 2 include the following:

$$
\begin{array}{r}
|3|<4 \quad \text { if and only if }-4<3<4 \\
|-3|<4 \quad \text { if and only if }-4<-3<4 \\
|0|<4 \quad \text { if and only if }-4<0<4
\end{array}
$$

Examples of Property 3 include the following:

$$
\begin{array}{r}
|5-2|<4 \quad \text { if and only if } 2-4<5<2+4 \\
|-3-(-1)|<4 \quad \text { if and only if }-1-4<-3<-1+4
\end{array}
$$

Examples of Property 4 include the following:

$$
\begin{gathered}
|4|>3 \text { if and only if either } 4>3 \text { or } 4<-3 \\
|-4|>3 \text { if and only if either }-4>3 \text { or }-4<-3
\end{gathered}
$$

Examples of Property 5, sometimes said to be the "distance" between the numbers a and b, include the following:

$$
\begin{gathered}
|4-3|=|3-4| \\
|0-2|=|2-0| \\
|-4-3|=|2-(-3)|=|2+3| \\
|-4-(-3)|=|-4+3|=|(-3)-(-4)|=|-3+4|
\end{gathered}
$$

Examples of Property 6 include the following:

$$
\begin{gathered}
|3| \cdot|2|=|3 \cdot 4| \\
|0| \cdot|-3|=|0 \cdot(-3)| \\
|-3| \cdot|-2|=|(-3) \cdot(-4)|
\end{gathered}
$$

Examples of Property 7, the "Triangle Inequality," include the following:

$$
\begin{gathered}
|3+4| \leq|3|+|4| \\
|0+4| \leq|0|+|4| \\
|-3+1| \leq|-3|+|1| \\
|-3+(-1)| \leq|-3|+|-1|
\end{gathered}
$$

And now to the proofs.
"Only he who never plays, never loses."
Written and published every Saturday by Richard Shedenhelm

