©he 相rexly Tingar

Seven Essential Properties of Absolute Value

(Part 2)

Definition 1: The absolute value of a real number x, denoted by " $|x|$," is defined in the following manner:

$$
|x|=\left\{\begin{array}{c}
x \text { if } x \geq 0 \\
-x \text { if } x<0
\end{array}\right.
$$

Theorem 1: For every real number $x,|x| \geq 0$.
Proof: Either $x \geq 0$ or $x<0$.

Case 2: Suppose that $x<0$. Hence, $|x| \stackrel{\text { D1 }}{\cong}-x$ and $-x>0$. So, $|x|>0$, by substitution. Thus, $|x| \geq 0$.
In either case, $|x| \geq 0$.

Theorem 2: If x is any real number and a is a positive real number, then

$$
|x|<a \text { if and only if }-a<x<a .
$$

Proof: Suppose that x is any real number and a is a positive real number.
Suppose that $|x|<a$. Either $x \geq 0$ or $x<0$.
Case 1: Suppose that $x \geq 0$. Hence, $|x| \stackrel{\text { D1 }}{=} x$. So, $x<a$, by substitution. Thus, $0 \leq x<a$. Hence, $-a<0$. Accordingly, $-a<x<a$.
Case 2: Suppose that $x<0$. Hence, $|x| \stackrel{\text { D1 }}{\cong}-x$. So, $-x<a$, by substitution.
Thus, $-a<x$. Hence, $-a<x<0$. So, $0<a$. Thus, $x<a$. Accordingly, $-a<x<a$.
In either case, $-a<x<a$. Consequently, if $|x|<a$, then $-a<x<a$.

Suppose that $-a<x<a$. Either $x \geq 0$ or $x<0$.

Case 2: Suppose that $x<0$. Hence, $|x| \xlongequal{\cong}-x$. But since $-a<x,-x<a$.
So, $|x|<a$, by substitution.
In either case, $|x|<a$. Consequently, if $-a<x<a$, then $|x|<a$.
Therefore, $|x|<a$ if and only if $-a<x<a$.

Theorem 3: If x and b are any real numbers and a is positive, then

$$
|x-b|<a \text { if and only if } b-a<x<b+a
$$

Proof: Suppose that x and b are any real numbers and that a is positive. Hence, $x-b$ is a real number. So,

$$
|x-b|<a \text { if and only if }-a<x-b<a
$$

by Theorem 2. Therefore,

$$
|x-b|<a \text { if and only if } b-a<x<b+a
$$

"Only he who never plays, never loses."
Written and published every Saturday by Richard Shedenhelm

